
Software Documentation Issues Unveiled
Emad Aghajani∗, Csaba Nagy∗, Olga Lucero Vega-Márquez†

Mario Linares-Vásquez†, Laura Moreno‡, Gabriele Bavota∗, Michele Lanza∗
∗Software Institute, Università della Svizzera italiana (USI), Switzerland

†Systems and Computing Engineering Department, Universidad de los Andes, Colombia
‡Department of Computer Science, Colorado State University, USA

Abstract—(Good) Software documentation provides developers
and users with a description of what a software system does, how
it operates, and how it should be used. For example, technical
documentation (e.g., an API reference guide) aids developers
during evolution/maintenance activities, while a user manual
explains how users are to interact with a system. Despite its
intrinsic value, the creation and the maintenance of documen-
tation is often neglected, negatively impacting its quality and
usefulness, ultimately leading to a generally unfavorable take on
documentation.

Previous studies investigating documentation issues have been
based on surveying developers, which naturally leads to a
somewhat biased view of problems affecting documentation. We
present a large scale empirical study, where we mined, analyzed,
and categorized 878 documentation-related artifacts stemming
from four different sources, namely mailing lists, Stack Overflow
discussions, issue repositories, and pull requests. The result is
a detailed taxonomy of documentation issues from which we
infer a series of actionable proposals both for researchers and
practitioners.

Keywords-Documentation; Empirical Study

I. INTRODUCTION

Good old documentation, the ideal companion of any
software system, is intended to provide stakeholders with useful
knowledge about the system and related processes. Depending
on the target audience, the contents of documentation varies.
For example, technical documentation (e.g., API reference
guides) describes information about the design, code, interfaces
and functionality of software to support developers in their
tasks, while user documentation (e.g., user manuals) explains
to end-users how they should use the software application.

Despite the undeniable practical benefits of documentation
during software development and evolution activities [1]–[4],
its creation and maintenance have been often neglected [1],
[3]–[7], leading to inadequate and even inexistent documenta-
tion. These and other aspects of documentation (e.g., needs,
learning obstacles) have been investigated through interviews
with and surveys of practitioners, with the general goal of
identifying the root causes of documentation issues (e.g.,
inaccuracy, outdatedness). To address these issues (at least
partially), different approaches and tools have been proposed
to aid developers during software documentation, including its
automatic generation [1], [8]. For example, a recent proposal by
Robillard et al. [9] suggests a paradigm shift towards systems
that automatically generate documentation in response to a
developer’s query, while considering her working context.

However, to achieve high-quality automatic documentation
systems, we require first a deep understanding of software
practitioners’ needs. Although existing studies have revealed
some of these needs, their results are limited by the low
number and lack of diversity of practitioners questioned and
documentation artifacts analyzed.

To overcome these limitations, we qualitatively analyzed
different types of artifacts from diverse data sources and
identified the issues that developers face when dealing with
documentation. Specifically, we mined open source software
repositories and examined a set of 878 artifacts corresponding
to development emails, programming forum discussions, issues
and pull requests related to software documentation. For
each artifact, we determined the reported issue, the type of
documentation presenting it, and the proposed solution, as well
as the documentation tools discussed. Based on our analysis,
we built a comprehensive taxonomy consisting of 162 types of
documentation issues linked to (i) the information it contains,
(ii) how the information is presented, (iii) the documentation
process and (iv) documentation tool support. We describe and
exemplify each category of documentation issues. We also
discuss their implications in software research and practice,
deriving actionable items needed to address them.

II. RELATED WORK

Software documentation has inspired research mainly on
two fronts: tools & approaches and (empirical) studies.

Tools & Approaches. There has been much work on build-
ing tools to support the automated generation of documentation.

Software summarization has shown progress with different
techniques and tools for generating abstractive and extractive
summaries of diverse software artifacts, such as bug reports
[10]–[12], classes and methods [8], [13]–[19], unit tests [20],
[21], commit messages [22]–[24], release notes [25], [26],
user reviews [27], code examples [28] and user stories [29].
Approaches aimed at supporting developers during coding have
also been developed. Code search engines and recommendation
systems are available for retrieving API and code usage
examples [30]–[33], code fragments implementing specific
features [34]–[37] and crowd knowledge [38], [39].

Despite these efforts, automated documentation is still
wishful thinking. A first research road map to enable automated
on-demand documentation has however been drawn by the
recent proposal of Robillard et al. [9].



TABLE I
SUMMARY OF PREVIOUS STUDIES ON SOFTWARE DOCUMENTATION ASPECTS.

Study Artifacts Summary of findings (related to concerns and quality attributes)

Forward and Lethbridge (2002) [1]:
Questionnaire with 48 participants (from sw in-
dustry, research peers, and mail lists members).

Software documentation
regularly used by partic-
ipants

Despite documentation being outdated, practitioners learn how to deal with it. “Software documen-
tation tools should seek to better extract knowledge from core resources. Software professionals
value technologies that improve automation of the documentation process, and its maintenance.”

Kajko-Mattsson (2005) [3]:
Exploratory study with 18 Swedish organizations.

Maintenance-related
documentation artifacts

“Documentation within corrective maintenance is still a very neglected issue.”

Chen and Huang (2009) [6]:
Questionnaire with 137 project managers and
sw engineers of the Chinese Information Service
Industry Association of Taiwan.

Software documentation
regularly used by partic-
ipants

Most typical problems in software documentation quality for maintenance are that software
documentation is untrustworthy, inadequate, incomplete or does not even exist, lacks traceability,
does not include its changes, and lacks integrity and consistency.

Robillard (2009) [40]:
Personal interviews with 80 professionals at Mi-
crosoft.

API documentation and
source code

The top obstacles for API learning are: resources for learning (documentation, examples, etc.),
API structure, Background, Technical environment, Process. API documentation must include good
examples, be complete, support complex usage scenarios, be organized, and have better design.

Dagenais and Robillard (2010) [41]:
(i) A qualitative study with 12 contributors and
10 users of open source projects, and (ii) an
evolution analysis of 19 documents from 10 open
source projects.

Open source projects
documentation in a
repository or wiki (e.g.,
Django, Firefox and
Eclipse)

In open source projects, knowing the relationships between documentation and decisions of
contributors help to define better techniques for documentation creation and maintenance. When
a wiki is selected to host documentation, its quality is threatened by erroneous updates, SPAM or
irrelevant content (URLs included). This requires more effort for maintaining wikis.

Robillard and Deline (2011) [42]:
(i) An initial questionnaire, (ii) a set of qualitative
in-person interviews and (iii) a questionnaire with
440 developers at Microsoft.

API documentation reg-
ularly used by partici-
pants

Relevant issues in the documentation that affect the developers learning experience: “documenta-
tion of intent, code examples, cookbooks for mapping usage scenarios to API elements, penetrability
of the API, and format and presentation of the documentation.”

Plösch et al. (2014) [43]:
Online questionnaire with 88 software profession-
als, mainly German speakers.

Software documentation
regularly used by partic-
ipants

The most important attributes are accuracy, clarity, consistency, readability, structuredness and
understandability. “There is a need for automatic analysis of software documentation quality.”

Zhi et al. (2015) [4]:
Mapping study about a set of 69 papers from 1971
to 2011.

N/A Documentation quality attributes that appear in most of the papers are completeness, consistency
and accessibility. More empirical evidence is required involving large-scale development projects,
or larger samples of participants from various organizations; more industry-academia collaborations
are also required, and more estimation models or methods to assess documentation.

Garousi et al. (2015) [44]:
Industry case study with analysis of documen-
tation (using the taxonomy by Zhi [4]) and a
questionnaire with 25 employees of NovAtel Inc.

Source code and a sam-
ple of software docu-
mentation (design, tests
and processes)

Technical documentation is preferred during development than during maintenance tasks; the
preferred source of information for maintenance is the source code; other sources of information
have no significant impact on developers’ preferences.

Uddin and Robillard (2015) [45]:
A case study and a questionnaire with 230 soft-
ware professionals from IBM.

API documentation The top 10 problems in API documentation are (i) incompleteness, (ii) ambiguity, (iii) unexplained
examples, (iv) obsoleteness, (v) inconsistency and (vi) incorrectness; while in presentation are (vii)
bloat, (viii) fragmentation, (ix) excess structural information and (x) tangled information.

Alhindawi et al. (2016) [46]:
Topic-modeling-based study.

KDE/KOffice source
base and its external
documentation

A novel approach for evaluating documentation quality. Tools that can automatically assess the
software documentation quality in an are highly demanded. Labeling and grouping documentation
would impact its quality positively.

Sohan et al. (2017) [47]:
Controlled study with 26 software engineers.

WordPress REST API
documentation

Developers feel more satisfied when having examples. When documentation lacks examples,
developers spend more time on coding, execute more trial attempts, and have lower success rates.

(Empirical) Studies. Software documentation has been
analyzed in diverse empirical studies that (i) report evidence
of its importance and impact in the software life cycle [1], [3],
[6], [41], [42], [44], (ii) describe problems that developers face
when dealing with it [3], [6], [40], [42], [45], (iii) list quality
attributes required in documentation [42], [44], [45], [48], [49],
(iv) provide recommendations for constructing it (including
standards) [1], [3], [40]–[42], [44], [45], [50], [51], and (v)
propose frameworks and tools for evaluating documentation
concerns such as cost, benefit and quality attributes [44], [46]–
[49]. Due to space limitations we summarize the closest ones
to our study in Table I.

The mapping study by Zhi et al. [4] is notable, as it reviews
about 100 documentation-related papers and reports that the
most frequently discussed quality attributes are completeness,
consistency and accessibility. Zhi et al. conclude that software
documentation is an immature area, and that stronger empirical
evidence is needed to gain a deeper understanding of it.

Most of the aforementioned studies gathered information
directly from participants and used practitioner samples re-

stricted to a specific context (e.g., a company). These studies
are therefore not diverse enough in terms of analyzed artifacts
and programming languages used by developers, and the largest
samples reported in the studies are 440 (Robillard and Deline
[42]) and 230 practitioners (Uddin and Robillard [45]). To avoid
some of the limitations imposed by interviews and surveys,
we opted for an approach that allowed us to study a wider
population in terms of number and types of artifacts by mining
different data sources.

Our results complement previous categorizations of docu-
mentation issues with a taxonomy that considers documentation
content, processes and tools.

Ours is the first mining-based study focused on identifying
documentation issues as discussed by practitioners in software
repositories. Previous studies following a mining-based strategy
are more general, identifying topics discussed by developers
[52]–[54] or by apps’ users [55].

III. EMPIRICAL STUDY DESIGN

Our goal is to answer the following research question (RQ):
What are the documentation issues faced by developers?

2



A. Data Collection
Our data collection consists of two steps. First, we adopt

an automatic process based on keyword matching to mine
candidate artifacts related to documentation from the four
analyzed sources (i.e., emails, issues and pull requests of
open source projects, and Stack Overflow threads). Then, we
manually analyze a statistically significant sample of artifacts to
categorize them based on the issues they discuss, the solutions
they propose, and the type of documentation they involve.

1) Identification of Candidate Artifacts Related to Documen-
tation Issues: Table II summarizes the artifacts automatically
collected from the four sources (see column “candidate
artifacts”). We discuss the process adopted in each case.

TABLE II
STUDY DATASET

Source Candidate Manually False Valid Labeled
Artifacts Analyzed Posit. Artifacts Sentences

Issues 394,504 345 19 324 562
Mailing Lists 6,898 101 5 95 220
Pull Requests 375,745 332 21 310 581
Stack Overflow 28,792 100 4 95 185
Overall 805,939 878 49 824 1,548

Stack Overflow (SO). We mined from the official SO
dump of June 2018 all discussions having a question la-
beled with a documentation-related tag. To determine these
tags, we searched for all tags related to documentation
and documentation tools in the SO tag page by using the
keywords doc, documentation and documentor. The latter term
is known to be part of the name of tools supporting software
documentation. One author then inspected all the tags resulting
from these three searches to identify the ones actually related to
software documentation and/or documentation tools. During the
inspection, the author read the tag name, the tag description and
some of the questions in which the tag was used. This process
resulted in the selection of 23 tags (e.g., code-documentation,
phpdocumentor, design-documents) that were used to search for
the related discussions in SO. The first 30 results (discussions)
returned by the 23 searches were manually inspected to look for
additional documentation-related tags missed in the first step.
The process was iterated with the newly founded tags until no
new tags were found in the top 30 results of the tag searches.
This resulted in a total of 78 (23+55) documentation-related
tags (available in our replication package [56]).

Next, we queried the SO dump to extract all discussions
having a question with a non-negative score and tagged with
one or more of the relevant 78 tags. We removed questions
with a negative score to filter out irrelevant discussions. This
process resulted in the selection of 28,792 discussions. For
each of them, we kept the question, the two top-scored answers
and the accepted answer (if any).

GitHub Issues and Pull Requests. We downloaded the
GitHub Archive [57] containing every public GitHub event
occurring between January 2015 and April 2018. While older
data is available, we excluded it since some of the information
needed for our study was only archived starting from 2015. We
extracted all events of type IssuesEvent, IssueCommentEvent,
PullRequestEvent and PullRequestReviewCommentEvent.

These events capture the opening/closing of issues and
pull requests as well as all the discussion held for them
through comments. A detailed description of these event types
is available online [58]. Then, we selected issues and pull
requests from projects having at least ten forks and/or stars
to exclude “toy” projects. Finally, we adopted a keyword-
matching approach to extract issues and pull requests related
to documentation. We started from the 78 SO tags previously
mentioned and converted them into 56 “keywords”. This
means, for example, that the SO tag design-documents was
converted into design doc (to match “design document”, “design
documents” and “design doc”), while tags including the word
“documentation” (e.g., xml-documentation) were replaced with
the keyword documentation, since matching this keyword will
also match the more specific ones. We also added 11 keywords
that we considered relevant but were not derived from any of
the 78 SO tags. For example, while the keyword api doc was
derived from the SO tag api-doc, we also added api manual.
In total, we defined 66 documentation-related keywords [56].

We extracted all the issues/pull requests having at least one
of the 66 keywords in their title and/or in their first post (i.e.,
the one opening the issue or the pull request). This resulted in
the selection of 394,504 issues and 375,745 pull requests.

Mailing Lists. We built a crawler to mine the mail archives
of the Apache Software Foundation (ASF) [59]. The ASF
archives all emails exchanged in the mailing lists of the projects
it runs. Each of its 295 projects has several mailing lists focused
on different topics. We mined all mailing lists named docs
(discussions related to documentation), dev (discussions among
developers) and users (discussions involving both users and
developers), for a total of 480 mailing lists. For the threads
extracted from the docs mailing lists, we did not apply any
filter. For the threads extracted from the dev and the users
mailing lists, we only selected those containing in the subject at
least one of 66 documentation-related keywords we previously
defined. This resulted in the extraction of 6,898 email threads,
each one composed by one or more messages.

2) Manual Classification of Documentation Issues: Once
we collected the candidate artifacts, we manually analyzed a
statistically significant sample ensuring a 99% confidence level
± 5%. This resulted in the selection of 665 artifacts for our
manual analysis, out of the 805,939 artifacts collected from
the four sources. Since the number of collected artifacts is
substantially different between the four sources (Table II), we
decided to randomly select the 665 artifacts by considering
these proportions. A simple proportional selection would
basically discard SO and mailing lists from our study, since
issues and pull requests account for over 90% of our dataset.
Indeed, this would result in the selection of 311 pull requests,
326 issues, 24 SO discussions and 6 mailing list threads. For
this reason, we adopted the following sampling procedure: for
SO and mailing lists, we targeted the analysis of 96 artifacts
each, ensuring a 95% confidence level ± 10% within those
two sources. For issues and pull requests, we adopted the
proportional selection as explained above. This resulted in 829
artifacts to be manually analyzed (99% confidence ± 4.5%).

3



The selected artifacts were manually analyzed by six of
the authors with the goal of classifying them as false positive
(i.e., unrelated to documentation issues) or assigning a set of
labels describing (i) the documentation issue discussed, (ii) the
solution proposed/adopted, (iii) the type of the documentation
and (iv) the documentation tools discussed. Each of these labels
was optional. For example, it is possible that only the issue
type and the solution were labeled for an artifact.

For two of the four categories, namely issue type and
documentation type, we started from a predefined list of labels.
For the issue types, we used the 13 quality attributes defined
by Zhi et al. [4]. For the type of documentation, we had 11
predefined labels that we selected based on our experience (e.g.,
code comments). See [56] for the list of predefined labels.

The labeling was supported by a Web app that we developed
for this task and for conflict resolution. Each author indepen-
dently labeled artifacts randomly assigned to her by the Web
app, selecting a proper label among the predefined ones or
defining a new label when needed. To assign a label, the author
inspected the whole artifact and, in the case of issues and pull
requests, also the related commits. Every time an author had
to label an artifact, the Web app also showed the list of labels
created by all taggers so far. The labeling was performed at
sentence level: The Web app allowed the author to select one
sentence from the artifact at a time and assign labels to it.
This means that multiple sentences could be labeled for each
artifact and hence multiple labels could be assigned to it. This
allowed us to create a database (publicly available [56]) of
labeled sentences related to documentation artifacts.

Each artifact was assigned to two authors by the Web app.
In case both of them classified the artifact as a false positive,
the artifact was replaced with another one randomly selected
from the same source (e.g., a false positive email thread was
replaced with another email thread). For each artifact X in
which there was a conflict in the assigned labels, a third
author (not previously involved in the labeling of X) was
assigned to solve it. A conflict in this scenario can happen
for many reasons. First, the two authors could label different
sentences in the artifact. Second, assuming the same sentences
are selected, different “categories” of labels could be assigned
to the sentences (e.g., one author labels a sentence as discussing
the issue, one as presenting a solution). Third, assuming the
same sentences and the same categories of labels are selected,
the label values differ (e.g., different solutions indicated for the
same sentence). Fourth, one author could classify the artifact as
a false positive, while the other could label it. For these reasons,
we had a high number of conflicted artifacts (765 out of 829
— 92.27%). We solved some specific cases automatically. In
particular, if two authors (i) labeled for the same artifact two
different sentences Si and Sj where Si is a substring of Sj

(or vice versa), and (ii) had no conflicts between the label
values, we automatically solved the conflict by selecting the
longest sentence as the valid one. This reduced the number of
conflicted artifacts to 592, which were manually reviewed by
a third author who could accept a conflicting sentence (and
apply minor modifications if necessary) or discard it.

In this final process, 5 artifacts were discarded as false
positives. The final number of sentences labeled for each type
of artifact is reported in Table II.

B. Data Analysis

We answer our RQ by presenting a taxonomy of the types
of documentation issues found in our analysis.

Such a taxonomy was defined in an open discussion involving
all the authors and aimed at merging similar labels and hierarchi-
cally organizing them (see Figure 1). We focus our qualitative
analysis on specific categories of issue types. For each category,
we present interesting examples and common solutions, and
discuss implications for researchers and practitioners.

C. Replication Package

All the data used in our study is publicly available [56].

IV. RESULTS DISCUSSION

As a result of the labeling process, we obtained 824 artifacts
including a total of 1,548 labeled sentences.

Figure 1 shows the hierarchical taxonomy of the 162 docu-
mentation issue types that we identified. They are grouped into
four main categories: (i) problems related to the information
content of the documentation describe issues arising from
“what” is written in the documentation; (ii) issues classified
under the information content (how) category focus on “how”
the content is written and organized; (iii) the process-related
category groups issues related to the documentation process;
and (iv) tool-related matters originate from the usage of a
documentation tool. The number shown in the main categories
of Figure 1 represents the number of artifacts related to that
issue (e.g., 81 artifacts were related to process-related issues).
Note that a single artifact might discuss multiple types of issues.
Figure 1 also shows the distribution of the analyzed artifacts
among the four sources we analyzed. Interestingly, problems
related to the content and how it is presented/organized are
mostly discussed in issues and pull requests; and discussions
about the documentation process and tools-related issues are
mainly held in mailing lists and SO respectively.

For each category, we next describe representative examples
and discuss implications for researchers (indicated with the
� icon) and/or practitioners (0 icon) derived from our findings.

A. Information Content (What)

A total of 485 artifacts discuss issues related to the infor-
mation content, i.e., “what” is written in the documentation.

Correctness (72). Correct documentation provides accurate
information in accordance with facts [4]. Incorrect documen-
tation might have unforeseen serious consequences, going
beyond wasted time trying to replicate a wrong code example
or following the wrong steps in a tutorial. This is the case of
an issue filed for the acid-state project, a tool providing ACID
guarantees to serializable Haskell data structures. As reported
in the issue, a false claim in the documentation could lead
to data loss: “This could easily cause permanent data loss if
the user then proceeds to remove the Archive folder, which is
claimed to be safe by the documentation” [65].

4



Process Related

UsefulnessUsabilityMaintainability Readability

Information Content (How)

Development Issues 
caused by documentation TraceabilityInternationalization Contributing to 

documentation
Doc-generator 
configuration

Wrong/Missing 
author information

Difficulty in translating 
into a language

Issues with 
character encoding

Missing translation 
for a language

How to write 
documentation

Help needed due 
to lack of time

Where the documentation 
should be placed in the 

repo
How to report issues found 

in the documentation
How to support external 

documentation 
contributors

Discussing what is missing/
needs improvement

Where to add a new 
piece of documentation

Feedback required 
for first draft

How to contribute to 
doc as an outsider

Build configuration ignores 
Javadoc warnings

Build tools are misplaced 
in the infrastructure

Difficulty in automating 
document generation

Problems introduced by 
auto-generated comments

Used CI/CD tools are 
not documented

Development issues caused by 
restructuring of documentation 

files

Excessive Website 
loadtime

Format/
Presentation

Warning the user about 
copy/paste 

counterexamples
Information 
organization

Accessibility/
Findability

Official Doc for a 
library/framework/...

Documentation of a 
terminated project

Source of primary doc 
(project site or wiki)

Content 
browseability/
searchability

How to find the 
doc of the actual 

version on website

User confused on 
where to start in 

the doc

How to find the 
doc for a specific 

thing

Poor support for 
navigating the 
documentation

Multiple 
readme files

Inconsistent 
formatting

Poor formatting 
style

Format (wiki/website/
interactive) to adopt

Style of URLs in 
documentation

License/
Copyright 
formatting

Inconsistent 
styling

Inconsistent 
terminology

Need to split the 
documentation (too 

large)
Cloned 

documentation
Superfluous 

documentation

Superfluous 
code comments

Superfluous 
instructions

Empty Javadoc 
commentsEmpty files

Superfluous auto-
generated code comments

Conciseness Clarity Spelling and 
grammar

Too verbose / 
Too much details

Noisy with 
superfluous parts

Confusing 
method names

Acronyms used 
in comments

Confusing 
documentation title

Unclear code 
example

Doc needs 
improvement/fix to 

become useful

Code example needs 
improvement to 
become useful

Information Content (What)

Correctness Completeness Up-to-dateness

Inappropriate 
installation instructions

Wrong 
translation

Erroneous code 
examples

Wrong code 
comments

Faulty 
tutorial

Failing installation 
process for a user

Improperly described 
installation process

Violation of best practices 
in the example code

Code-doc 
inconsistency

Screenshot does not 
reflect current GUI

Outdated/Obsolete 
references

Missing documentation for 
a new release (e.g. v2.0)

Outdated 
translations

Missing documentation 
for new feature/

component
Outdated 
example

Outdated version 
information

Outdated license/
copyright information

Outdated installation 
instructions

Broken 
link

Link to an old version 
of doc (while newer is 

available)

Code must 
change to match 

doc

Behavior described in 
documentation but not 

Implemented

Missing/Poor 
documentation Missing diagrams

Missing performance 
information

Missing 
introduction section

Documentation 
for users

Installation, 
Deployment, & 

Release
Missing supported 

versions
Missing 

links
Missing license/

copyright 
information

Missing 
configuration 
instructions

Missing 
compatibility 
information

Missing code 
comments

Developer 
guidelines

Missing code 
behavior clarifications

Missing required 
libraries

Missing information 
about error/warning 

messages

Default code 
behavior is not 
documented

Missing style 
conventions

Missing contribution 
guidelines

Missing information 
regarding testing/debugging

Missing information 
regarding Javadoc policy

Missing 
release notes

Missing deployment 
documentation

Missing 
build guide

Missing 
installation guide

Missing alternative 
solutions

Missing best 
practices

Missing 
unrecommended usage

Missing API 
documentation

Missing library 
usage information

Missing user 
manual

Missing code 
example

Missing tutorial 
(step-by-step guides)

Missing 
FAQ

Missing link from 
source code to doc

Tool Related

Bug/Issue Support/
Expectations Help required Tool migration

Outdated 
documentation tool

Excessive 
output sizeBug in the tool Request for new 

featureAutomatization

IDE integration IDE support for autoformatting 
comment blocks

Modifying multiple 
page-content together

Update multiple files together 
with a specific format

Warning about doc 
issues ahead of time

Ability to document 
more code elements

Missing editor for writing 
documentation

Support for reusing part of 
existing documentation

Poor quality of 
generated comments

Automatic 
documentation 

generation
Need to automatize doc deployment/

publishing by script/tool
Need to automatically 

update doc after changes

License/Copyright 
auto-generation

Exclude specific entities 
from auto-generated doc

How to 
do/use

Receiving error/
warning messages

License of documentation 
tool is expired

Asking the existence of 
a documentation tool

Format-related Configuration/
Misconfiguration

Broken formatting Problems to convert/
migrate doc format

21

17 34 90 4

134

81

20 50 4 8 5

107 20138

72 268 190

Assumption of 
existing knowledge

255

485Stack Overflow
Issues
Pull Requests
Mailing Lists

<1%
46%
42%
11%

Stack Overflow
Issues
Pull Requests
Mailing Lists

 6%
40%
37%
17%

Stack Overflow
Issues
Pull Requests
Mailing Lists

11%
21%
28%
40%

Stack Overflow
Issues
Pull Requests
Mailing Lists

61%
21%
14%
4%

Availability

Documentation not 
available due to website 

migration

Fig. 1. Documentation Issues Taxonomy

5



The type of documentation most frequently impacted by
correctness issues was code examples (e.g., [66]), accounting
for 50% of the cases in which we labeled a documentation
type, followed by installation guidelines (20%, e.g., [66]).
Correctness issues in code examples include syntactic mistakes
(e.g., “the documentation gives the following example [...]
but running it leads to ERROR: syntax: [...] is not a symbol”
[67]), as well as more serious programming errors (e.g., “one
of the example fixture files in the documentation would not
work because it contains references to objects that have not
yet been declared” [68]). In general, due to their potential
consequences, correctness issues were handled with care by
developers. For example, we found a case of correctness issue
caused by a wrong translation, where developers not only
fixed the mistranslation but also decided to have the document
reviewed by a native speaker [69].

Completeness (268). Documentation is incomplete if it does
not contain the information about the system or its modules
needed by practitioners/users to perform their tasks [4].

Completeness accounts for 55% of the issues related to
the documentation content. We observed different causes of
incompleteness. For example, in an email sent to the Apache
httpd mailing list, a user complained about missing definitions
of ambiguous terms: “is there any idea what “frequently” might
mean?” [70]. Indeed, the documentation states “[...] should
result in substantial performance improvement for frequently-
requests files”, without providing a clear definition of what
“frequently-requests files” are. Other common completeness
issues are related to missing descriptions of library components
(e.g., “[...] missing information about the toolbar buttons”
[71]), missing API usage clarifications (e.g., “I think that we
should add documentation ensuring that the user passes a tree
with reset bounds” [72]) and lack of compatibility information
(e.g., “Explicitly mention if clang 4.x, 5.x are supported” [73]).

API references and code comments are the types of docu-
mentation mostly affected by completeness issues.

Up-to-dateness (190). A document is outdated when it is
not in sync with other parts of a system. Up-to-dateness differs
from “Correctness” and “Completeness” in that the information
was correct and complete before a change was introduced.

Up-to-dateness problems account for 39% of issues related to
documentation content. In 21% of these cases, the inconsistency
appeared to be between a system’s behavior and its description
in the documentation. The discrepancy was usually triggered
by a change in the code that required to change parts of
the documentation or to add/remove content. This latter case
typically happened when new features are implemented, e.g.,

“include documentation around the new field converter feature”
[74]. In other cases, instead, users complained about the
documentation of a behavior that became unavailable (e.g.,

“the setLeftScale and setRightScale routines mentioned in the
doxygen documentation seem not to exist” [75]).

While most of the times is the documentation that does not
reflect what is implemented in the code, in other cases it is the
code that needs to be updated to match the documentation. For
instance, implementing a method in a non-thread-safe manner

was questioned by a user as “the callback is not thread-safe
which it has to be according to the documentation” [76].

There were also situations in which there was a debate
to decide whether the code or the documentation needed
adjustment to fix the inconsistency. This was the case of
a GitHub issue related to an inconsistency between the
documented and actual behavior of an API: “Is this an error
in the code, or an error in the documentation?” [77].

Referring to deprecated information is another reason for up-
to-dateness issues and can affect the documentation in different
ways. It includes having deprecated information in the project’s
website (e.g., “homepage recommends deprecated commands”
[78]), outdated copyright information [79] and version numbers
[80] in the code base, as well as outdated references (e.g., links
to old versions of the system), which was the most prevalent
issue within this category. For example, a user reported that

“the example linked in the documentation is using the 3.x version
of the API, and that may be confusing to readers” [81].

Some developers adopted preventive solutions to ensure
documentation up-to-dateness, adding this as one of the items
to check in the contribution to-do list [82], or even making
Javadoc update mandatory for pull request acceptance [83].

Discussion and Implications. Our results highlight fre-
quent issues related to the correctness, up-to-dateness and
completeness of the information reported in the documentation.
The documentation types most frequently affected by correct-
ness issues are, not surprisingly, code examples. Indeed, as it
happens with production code, bugs can affect code examples
as well. A recommendation to mitigate this problem is to apply
testing techniques on code examples as done on production
code. However, this might not be trivial since documentation
often reports incomplete examples rather than entirely runnable
programs (e.g., a snippet of code on how to use an API is
shown, but the snippet cannot be actually compiled and run).
� Devising approaches to (i) test complete/incomplete code

examples in documentation and (ii) validate the consistency
between snippets and source code is a research challenge for
the software engineering community. Assuming the availability
of such techniques, regression testing of code snippets could
be performed to ensure they are always up-to-date. A more
challenging scenario is to automatically generate code examples
to be included in documentation.

Up-to-dateness and completeness issues can also benefit
from careful traceability of information between documentation
and code. We observed issues related to documented code
that does not exist in the system anymore. To address this
issue, on the one side, 0 developers should keep track
of documented/undocumented code components. One way
of doing so is to use a contingency matrix, where rows
represent code components and columns represent existing
documentation artifacts. A check in the entryi,j would indicate
that the component i is documented in the artifact j. This
matrix can then be queried to check for inconsistencies. On
the other side, � researchers should continue their work on
traceability link recovery [60], investing in the implementation
of tools that can be easily adopted by developers.

6



Finally, some of the issues we observed (e.g., ambiguous
terms in the documentation) highlighted 0 the importance of
including documentation users in the loop. Indeed, information
that might look clear from the developers’ perspective is not
always easy to digest by the users of the system. Involving them
in the review of the documentation might help in minimizing
the users’ learning curve and in avoiding misunderstandings.

B. Information Content (How)

A total of 255 artifacts discuss issues related to how the
content of the documentation is written and organized.

Usability (138). Usability of documentation refers to the
degree to which it can be used by readers to achieve their
objectives effectively. This category covers issues affecting
users’ experience with the documentation.

Half of the issues (50%) were related to information
findability, i.e., when the desired information was available but
couldn’t be found by a user, e.g., “I cannot find the description
or implementation notes” [84] or “I can’t seem to find the API
documentation anywhere. Could you please host it somewhere
or point me there” [85]. Developers often handle these issues
by providing users with pointers to the documentation needed.
In some cases, they go further to improve the user experience
by implementing a search feature in the project’s website [86]
or by adding more intra-documentation links [87].

Information organization (18%), i.e., how intuitively and
clearly the information is organized [4], constitutes the second
most common concern in this category. Placing documentation
in standard locations is an effective practice to help users
locating it, e.g., “the consolidated document [...] is compiled
into the ‘docs/’ folder, because as you already said, this location
is much more prominent and easier to find” [88]. Moreover,
leveraging intra-documentation links for easier navigation [88],
preparing a template (e.g., “I have setup a page template that
can be used as starting point for new pages” [89]) and adding a
‘Table of Contents’ for easier navigation [90] were among other
popular solutions to ensure a good information organization.

Poor or inconsistent formatting was another common issue,
though not really a barrier for using documentation (e.g.,

“heading styles should be improved to have a better separation
between H1, H2”). In general, users only complain about
formatting when other types of usability issues emerge (e.g.,

“I never find what I want on revapi.org [...] the link structure
is counter-intuitive, some links are somehow hidden” [91]).
We also observed intra-documentation consistency issues (e.g.,

“inconsistent title between sidebar and article” [92]) and
problems related to poor content organization (e.g., “the order
of the modules on modules.html is pretty arbitrary” [93]).

Availability, i.e., whether the documentation is accessible,
was also an issue in the analyzed artifacts. For example, in
response to a user who was looking for the documentation of a
plugin, a developer answered “unfortunately, at the moment not
all documentations for all plugins have been migrated yet. This
is currently under going” [94]. In another case where a user
was looking for documentation of a terminated project [94],
web archive services (e.g., Wayback Machine) were suggested.

Maintainability (21). This category concerns issues related
to the maintenance of documentation, e.g., how easy it is
to apply changes or corrections to it. Just like in source
code, duplicated content caused troubles for documentation
maintainers, which were mostly resolved by replacing the clone
with links and references. However, we noticed that documen-
tation frameworks often make it hard to avoid duplicates. For
instance, due to the document format requirements of Jazzy,
a documentation tool for Swift and Objective-C, users have
to create unwanted duplicates for Xcode Quick Help (an IDE
feature for showing methods’ comments), as a developer reports:

“duplicating the documentation is admittedly annoying, but that’s
still the only thing that satisfies Quick Help” [95]. In another
scenario, due to format mismatch between GitHub pages and
AsciidoctorJ, a Java documentation tool, the documentation
content was kept in two locations: “the reason for these 2
locations is that GitHub does not resolve the includes” [88].

Another noticeable issue was the existence of superfluous
files that might cause confusion. This was suggested by a
developer of the Apache httpd project: “get rid of these no-
content files so they don’t confuse the issue of what still needs
to be documented” [96].

Readability (107). Readability is the extent to which
documentation is easy to read. Issues related to lack of clarity
represented more than half (55%) of these problems. A user
of the Apache stdcxx project complained: “we were able to
solve the problem using the information in the users guide,
but [...] the documentation is rather confusing on exactly how
this needs to be set” [97]. Abstract [98], too technical [99]
and too verbose/noisy [99] information were among the main
reasons for poor readability. Developers reacted to these issues
by rewriting unclear parts of the documentation, e.g., “this pull
request aims to better explain the differences between these
two options” [100] or “I don’t know if this is the best wording,
but I found this behavior confusing and not clearly explained
in the docs. Hope this clarifies things a bit” [101].

The second most frequent cause for readability issues were
simple typos. Fixing such errors was always welcome: “lan-
guage corrections would be a hugely appreciated contribution
too” [98], especially when they affected user documentation:

“[...] we do not have to be as stringent as we have to be for
user visible docs” [102].

Usefulness (20). A document is useful if it is of practical
use to its readers, i.e., readers can successfully achieve their
goals with the help of the document. Depending on the reader’s
goal, usefulness can be affected by several factors. For instance,
in response to a documentation update, the owner of a project
suggested: “it would be good to make this example a bit more
realistic”. In this case, the code example is neither outdated
or wrong, but it required improvements to be more useful.

Many maintainers addressed usefulness by asking users’
feedback on the documentation. In one scenario, developers
collected user feedback to improve the documentation website
in two steps: first they conducted a survey prior to documen-
tation refactoring, and then they gathered feedback to ensure
that the changes met the users’ needs: “we did a survey prior

7

https://archive.org/web/
https://github.com/realm/jazzy
https://github.com/asciidoctor/asciidoctorj


to the doc lockdown to get an idea of what we should focus
on. Now we have a yes/no style survey to ensure that we met
the user needs when it came to improving the docs” [103].

Discussion and Implications. Besides the information con-
tent (i.e., what is in the documentation), the way it can be
consumed (i.e., how effectively its content can be exploited)
strongly influences documentation quality. As our analysis
reveals, a major part of the discussed issues is related to
the usability of the documentation, stemming from poor
information organization and findability issues (if existing
documentation cannot be found it conceptually does not exist).
0 Developers can prevent/address these issues by: (i) pro-

viding a search engine in the project’s website to improve
content findability; (ii) adopting a consistent documentation
format, e.g., a template that ensures the presence of intra-
documentation links and a table of contents, or a style similar
to existing documentation recognized by its quality (e.g., see
the MongoDB documentation at https://docs.mongodb.com);
and (iii) archiving the documentation of old, dismissed versions
of their projects in a specific location, to make them available
to users who cannot update to newer versions. We also support
the idea adopted by some developers to survey their users [103]
to investigate their documentation needs.
� In this context, researchers can contribute to improving

documentation quality by working in two directions. First,
in the same way that code clone detection techniques have
been implemented [61], approaches to detect documentation
clones and automatically remove (refactor) them could help
developers in reducing redundancy in documentation. Second,
similar to code readability metrics [62], readability metrics
tailored for documentation could help developers in spotting
and fixing readability issues. While one may think that software
documentation consists only of text and, as such, standard
readability metrics for text can be used (e.g., the Flesch-
Kincaid readability formulas [63]), software documentation is
often a mix of text and code that uses domain-specific terms.
Moreover, while part of the problem is to classify a document as
highly/poorly readable, a more difficult challenge is to indicate
to the developer the exact section of the documentation causing
the readability issue. Thus, creating “documentation linters” is
an interesting avenue for future research.
� In addition, studies investigating the users’ behavior when

looking for documentation could help to define better practices
for the organization and presentation of documentation.

C. Tool Related

In this section we discuss four types of issues related to
documentation tools (e.g., Javadoc) found in 134 artifacts.

Bug/Issue (17). This category refers to problems presented
by documentation tools (e.g., bugs, malfunctions) that are not
originated from improper usage or configuration.

Bugs in software systems are quite common, and documen-
tation tools are no exception.

Users often asked questions on SO when they were not sure
whether they experienced a problem originating from wrong
usage or a bug in the tool. These stories usually ended up in

the issue tracker. In one case, when a user failed to parse a
markdown file with Doxygen asked a question on SO saying

“By this definition, this should work [...] Is this a bug, or am I
not doing it right?”. She got a prompt response: “This appears
to be a bug in the Markdown parser you are using. You might
consider reporting it to the developers of that project”.

In another case [104], a user noticed that stack haddock, a
toolset for Haskell development, does not generate documenta-
tion for the dependencies of the executable or test components,
but only for library components. Although the issue is still
unsolved and might look like a feature request, it is labeled as
“Should” by developers, which implies that the current behavior
needs to be changed.

Support/Expectations (34). This category covers develop-
ers’ needs that were not fulfilled by documentation tools.

Users often wanted popular tools to be available in several
contexts/languages, e.g., “Is there anything like GhostDoc
for C++” [105], or “Is there any tool which provides these
Doxygen-style features for Ruby?” [106].

New features for existing tools were requested several times,
as in a scenario where a user needed quick access to Android
documentation from Android Studio [107].

Automatization was also frequently discussed. A representa-
tive example is the automatic deployment of documentation,
which was implemented in a project after a developer’s
suggestion to automatically publish the latest documentation
for a specific branch [108].

Help required (90). This category covers issues caused by
improper tool usage or configuration rather than by bugs.

Warning and error messages from documentation tools were
discussed in all analyzed sources. Examples of these warn-
ings/errors were related to the use of a wrong Python version
[109], a wrong path in the documentation build configuration
[110], inconsistencies in the Javadoc comments format [111]
and empty Javadoc code comments [112]. Providing tool usage
examples was the most prevalent solution (e.g., [113]).

“How to” questions related to documentation tools, e.g.,
“how can I get Sphinx to recognize type annotations?” [109],
account for 83% of the observed issues in this category. This
type of question was mostly asked in SO (79%). Formatting
was a major sub-issue. In one case, phpDocumentor generated
files with a wrong format: “When running phpDocumentor, the
resulting files/ folder looks extremely weird”. This issue has
been open since November 2015 [114].

Tool migration (4). This category refers to issues related
to migration, either to a newer tool version or to another tool.

Errors after migrating to a newer version of the same tool
were observed in two out of four discussions we analyzed. In
one scenario, a user faced numerous errors with a newer version
of Javadoc: “javadoc is having troubles compiling Tools and I
can’t see why. It has only happened since I migrated to Java
8. I never saw this issue with Java 7” [115].

In another case, developers noticed that a navigation bar
disappeared from the documentation after migrating to a newer
Sphinx version. The answer noted that this was a change in
the default theme, but could be set to behave as it did before.

8

https://docs.mongodb.com
https://github.com/commercialhaskell/stack
https://www.phpdoc.org
www.sphinx-doc.org


Discussion and Implications. Most of the tool-related is-
sues we identified can be generalized to issues experienced by
users with any type of tool, not just with the one related to
documentation. The prevalence of “how to” questions in this
category, reinforce our findings on completeness and findability
of documentation (see Section IV-A). Indeed, these questions
are likely the result of missing (or difficult to find) documenta-
tion in documentation tools. Thus, the same previously distilled
implications for researchers and practitioners apply here.

We identified many artifacts discussing feature requests or
tool expectations, which carry a message for 0 practitioners
to pay attention to common needs, such as support for IDE
integration, handling of multiple documents together and
automatic document/comment generation.

In addition, � researchers could develop approaches to help
users in understanding whether a problem they are experiencing
is due to a tool misusage or, instead, if it is a well-known
bug of the tool. This can be done, for example, by capturing
characteristics of the error (e.g., the generated stack traces if
available) to automatically search on the project’s issue tracker
and/or on Stack Overflow for related discussions.

D. Process Related

Documentation process issues are discussed in 81 artifacts.
Internationalization (20). This category covers issues re-

lated to translation processes, e.g., missing/wrong language
translations, the need for reviewing translated documents and
rendering problems due to character encoding.

The lack of translated documentation was a recurrent
problem (e.g., “is there a danish translation started?” [116]),
especially when the English documentation was not available,
which represented a usage obstacle for several users. This was
the case of a project mainly documented in Chinese. In a pull
request created to start an English version of the documentation,
the main developer apologized for the lack of translation: “Most
user are Chinese, include me. Our English is not good, so
sorry”, to which a user replied “I could use google translate,
but the more effort I have to put into understanding a framework,
the less likely it is that I use it” [117].

Many projects benefited from crowdsourcing the translations,
which allowed external users to contribute. To this end, projects
that did not have the documentation on code-sharing platforms,
discussed whether to move the documentation to obtain more
contributions: “Wonder [. . . ] if we shouldn’t push our doc on
GitHub to ease contributions” [118].

Missing guidelines on how to contribute a translation was
also a common concern, mostly addressed by providing a page
with instructions, e.g., “we need a webpage describing the
basics of how to go about translating the apache docs” [99].

Character encoding was another typical source of problems
in the context of document translation, as developers were often
puzzled about the proper encoding to choose. For example, in a
mailing list discussion for the simple question “Which encoding
should be used for the .fr files?” [119], several encodings were
suggested, because factors such as file size or encodings better
supported by clients were considered.

Traceability (5). This category concerns issues related to
the ability to track documentation changes, i.e., to determine
where, when, by whom and why a change was performed.

A straightforward solution to keep track of changes in a
document was to manage it with a version control system, e.g.,

“move wiki to /docs [...] It also means docs are versioned with
each new release” [120]. It is not always feasible, however, to
track changes in a version control system. Examples include
cases in which the documentation is stored in binary format or
in a database. In such cases, preserving traceability by at least
versioning some meta-information for each document was a
common solution: “We need a webpage describing [. . . ] and
perhaps some standard comments to put at the top of each doc
(english version, author, reviewer)” [99].

Development issues caused by documentation (8). This
category covers issues caused by documentation, i.e., unwanted
effects of documentation on the development process.

In one interesting case, auto-generated documentation caused
issues for the reviewing process of pull requests, as it resulted
in noisy diff outputs. As a solution, the developers suggested to
split the documentation and the code changes into two separate
commits: “It would be great if we could find a way [...] to
defeat the generated files from showing up in the PR diffs,
as they overwhelm the diff and make it very hard to review
for any other changes. To that end, it would be great if this
PR could be squashed into two commits (one with script etc
changes, and one with only generated docs” [108].

Contributing to doc (50). This category covers issues
encountered by (internal or external) contributors of documen-
tation while they were reporting/fixing errors or writing new
documents. It also includes developers’ concerns on supporting
external contributors.

We observed that many projects welcome contributions to
their documentation from non-members of the projects. To do
so, they tried to facilitate the contribution process by offering
different aids, as an Apache developer said “I’ve tried to lower
the barrier [...] to allow anyone to contribute. You can now
edit and review change[s] to the jclouds.incubator.apache.org
site entirely within your web browser.” [121]. In one scenario,
a developer opposed involving a less-known technical solution,
namely GitHub pre-commit, into the contribution pipeline
and said “I am reluctant to use precommit hooks to modify
the document, as it makes contributions from the community
more difficult” [88]. Indeed, a non-documented and more
laborious contribution process can make someone back out of
contributing. For instance, a user who wondered how to update
an incomplete documentation page stated: “I don’t know where
I should modify this page, I have no problem to update it but
because I know that cannot be modified directly I don’t know
where to do it” [122]. To avoid this situation, well-explained
contribution guidelines [123] were provided, sometimes even
augmented with a documentation template [89].

Another common issue was related to the lack of knowledge
about best practices to write code comments or documentation,
e.g., “how can I document this in JSDoc return type” [124].
In another example, a user who started a documentation page,

9

https://pre-commit.com/


sent an email to get feedback on the draft version of the
document by adding “I have just started some user-guide type
of documentation [...] Any feedback is welcome” [125].

Doc-generator configuration (4). This category covers
issues related to documentation generators, mostly found in
the context of the building process of a project.

An important issue was observed in a thread of the Apache
SystemML mailing list, where a developer complained about
incomplete and outdated API comments due to the project’s
build configuration that ignores the warnings of the documen-
tation tool [126]. To improve the documentation quality, the
developer suggested marking these issues as blockers, with
the goal of fixing them in the next release. In another project,
developers decided to treat documentation issues warnings as
errors, making the build fail: “So now once warnings are fixed,
maybe we could change them into errors, so when somebody
makes a mistake it will cause build to fail” [127].

Discussion and Implications. Many of the issues related to
the documentation process concern the way in which external
contributors can help in writing, updating and translating
documentation. Our findings can be distilled into guidelines for
developers to ease the documentation process, which can result
in higher-quality documentation and pleased contributors.
0 First, developers have to provide contributors with clear

guidelines (ideally accompanied by documentation templates)
that carefully explain what is expected to be covered in the
documentation, how different types of documentation (e.g.,
code comments) should be written and what the process to
contribute is. Second, developers have to consider widely-used
code-sharing platforms (e.g., GitHub) to host documentation,
where the likelihood of attracting external contributors from
all around the world is quite high, which could help with
time-consuming tasks such as the translation of documentation.
Third, developers have to adopt mechanisms to promote good
documentation practices, such as making a build fail when
documentation issues are spotted via program analysis (e.g., a
new method has been implemented but one of its parameters
has not been documented in the Javadoc).
0 Another take-away for developers is the need to provide

English documentation for their software projects, which would
increase their adoption (and, possibly, the contributions).
� Researchers have instead the possibility to work on the

optimization of these documentation processes and answer
fundamental research questions, such as what constitutes a good
contributors guideline (e.g., by surveying software developers).
Finally, as already observed in the literature [9], � advances
in the automatic software documentation field are clearly
needed. For example, while current static analysis tools used in
continuous integration perform simple checks on documentation
(e.g., to identify missing comments), the development of
approaches that are able to detect more complex documentation
smells [64] at building time is worthy of investigation.

V. THREATS TO VALIDITY

Threats to construct validity relate to possible measurement
imprecision when extracting data used in our study. The
automatic mining of developers’ documentation discussions
based on keywords-matching mechanisms resulted in the
retrieval of some false positives (as reported in Table II). These
imprecisions were discarded during our manual analysis, thus
they did not affect our findings.

In our manual analysis, we based the classification of
discussions on what was stated in the analyzed artifacts. It is
possible that the information reported in individual artifacts
is incomplete, for example due to the fact that an issue was
partially discussed in the mailing list and partially via chat.

Threats to internal validity concern confounding factors,
internal to our study, that can affect the results. They are
related to possible subjectiveness introduced during the manual
analysis. We mitigated this threat by making sure that each
discussion was independently analyzed by two authors and that
conflicts were solved by a third author.

Threats to external validity represent the ability to generalize
the observations in our study. While we analyzed data of
different software projects and from diverse data sources, it is
possible that our taxonomy of documentation issues depends
on the particular set of discussions we analyzed, and that in
other contexts developers discuss issues we did not encounter.

VI. CONCLUSIONS

We inspected 878 artifacts from four different sources to
derive a taxonomy of 162 types of issues faced by developers
and users of software documentation. We qualitatively discussed
our findings and expose implications for developers and
researchers, with the goal of highlighting good practices and
interesting research avenues in software documentation.

In essence, our study empirically confirms and complements
previous research findings (and common sense): Developers
(and users) prefer documentation that is correct, complete, up
to date, usable, maintainable, readable and useful.

Given the undeniable value of good documentation, the
question is why it is and remains unpopular in software
development. We believe that the issues unveiled through our
study corroborate, on the one hand, the need for the realization
of a vision like the one laid out by Robillard et al. [9]: Systems
should be capable of documenting themselves automatically.
On the other hand, this requires researchers and practitioners
to accept the fundamental notion that documentation is not a
mere add-on to any software system, but a part of the system
itself.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the projects PROBE (SNF
Project No. 172799) and CCQR (SNF Project No. 175513),
and CHOOSE for sponsoring our trip to the conference.

10



REFERENCES

[1] A. Forward and T. C. Lethbridge, “The Relevance of Software Documen-
tation, Tools and Technologies: A Survey,” in Proc. of the 2002 ACM
Symp. on Doc. Eng. (DocEng). ACM, 2002, pp. 26–33.

[2] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE Softw., vol. 20, no. 6,
pp. 35–39, Nov. 2003.

[3] M. Kajko-Mattsson, “A Survey of Documentation Practice within
Corrective Maintenance,” Empirical Software Engineering, vol. 10, no. 1,
pp. 31–55, 2005.

[4] J. Zhi, V. Garousi-Yusifoglu, B. Sun, G. Garousi, S. Shahnewaz,
and G. Ruhe, “Cost, benefits and quality of software development
documentation: A systematic mapping,” Journal of Systems and Software,
vol. 99, pp. 175–198, 2015.

[5] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-evolve?
on the relation between source code and comment changes,” in WCRE’07,
Oct 2007, pp. 70–79.

[6] J. C. Chen and S. J. Huang, “An empirical analysis of the impact
of software development problem factors on software maintainability,”
Journal of Systems and Software, vol. 82, no. 6, pp. 981–992, 2009.

[7] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk, “How do
developers document database usages in source code? (n),” in ASE’15,
Nov 2015, pp. 36–41.

[8] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for Java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, Feb 2016.

[9] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C.
Murphy, L. Moreno, D. Shepherd, and E. Wong, “On-demand Developer
Documentation,” in Proc. of the 33rd IEEE Int. Conf. on Software
Maintenance and Evolution (ICSME), sep 2017, pp. 479–483.

[10] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ‘hurried’ bug
report reading process to summarize bug reports,” in Proc. of the 28th
IEEE Int. Conf. on Soft. Maintenance (ICSM), Sept 2012, pp. 430–439.

[11] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “AUSUM: Approach
for unsupervised bug report summarization,” in Proc. of the ACM
SIGSOFT 20th Int. Symp. on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 11:1–11:11.

[12] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic Summarization
of Bug Reports,” IEEE Trans. on Soft. Eng., vol. 40, no. 4, 2014.

[13] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in Proc. of the 17th Working Conf. on Rev. Eng., Oct 2010, pp. 35–44.

[14] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for Java methods,”
in Proc. of the IEEE/ACM Int. Conf. on Automated Software Engineering,
2010, pp. 43–52.

[15] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and V. Shanker,
“Automatic Generation of Natural Language Summaries for Java Classes,”
in 21st IEEE Int. Conf. on Program Comprehension (ICPC’13). San
Francisco, USA: IEEE, 2013, pp. 23–32.

[16] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proc. of the 36th Int. Conf. on Software
Engineering (ICSE 2014). ACM, 2014, pp. 390–401.

[17] P. W. McBurney and C. McMillan, “Automatic documentation generation
via source code summarization of method context,” in Proc. of the 22nd
Int. Conf. on Program Comprehension (ICPC 2014). ACM, 2014, pp.
279–290.

[18] P. W. McBurney, C. Liu, C. McMillan, and T. Weninger, “Improving
topic model source code summarization,” in Proc. of the 22nd Int. Conf.
on Program Comprehension (ICPC 2014). ACM, 2014, pp. 291–294.

[19] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk, “Doc-
umenting database usages and schema constraints in database-centric
applications,” in Proc. of the 25th Int. Symp. on Software Testing and
Analysis (ISSTA 2016). ACM, 2016, pp. 270–281.

[20] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall, “The
impact of test case summaries on bug fixing performance: An empirical
investigation,” in Proc. of the 38th Int. Conf. on Software Engineering
(ICSE 2016). ACM, 2016, pp. 547–558.

[21] B. Li, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and N. A.
Kraft, “Automatically documenting unit test cases,” in Proc. of the IEEE
Int. Conf. on Software Testing, Verification and Validation (ICST 2016),
April 2016, pp. 341–352.

[22] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in Proc. of the IEEE 14th Int. Working Conf. on
Source Code Analysis and Manipulation, Sept 2014, pp. 275–284.

[23] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“ChangeScribe: A tool for automatically generating commit messages,” in
2015 IEEE/ACM 37th IEEE Int. Conf. on Software Engineering, vol. 2,
May 2015, pp. 709–712.

[24] S. Jiang and C. McMillan, “Towards automatic generation of short
summaries of commits,” in Proc. of the 25th IEEE/ACM Int. Conf. on
Program Comprehension (ICPC 2017), May 2017, pp. 320–323.

[25] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proc. of the
22nd ACM SIGSOFT Int. Symp. on Foundations of Software Engineering
(FSE 2014). ACM, 2014, pp. 484–495.

[26] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and
G. Canfora, “ARENA: An approach for the automated generation of
release notes,” IEEE Trans. on Soft. Eng., vol. 43, no. 2, Feb 2017.

[27] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio,
G. Canfora, and H. C. Gall, “What would users change in my app?
Summarizing app reviews for recommending software changes,” in Proc.
of the 24th ACM SIGSOFT Int. Symp. on Foundations of Software
Engineering (FSE 2016). ACM, 2016, pp. 499–510.

[28] A. T. T. Ying and M. P. Robillard, “Code fragment summarization,” in
Proc. of the 9th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2013). ACM, 2013, pp. 655–658.

[29] R. Krasniqi, S. Jiang, and C. McMillan, “Tracelab components for
generating extractive summaries of user stories,” in 2017 IEEE Int. Conf.
on Soft. Maint. and Evolution (ICSME), Sept 2017, pp. 658–658.

[30] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in Proc. of the 27th Int. Conf. on Software
Engineering (ICSE 2005). ACM, 2005, pp. 117–125.

[31] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api
components and examples,” in Proc. of the Visual Languages and Human-
Centric Computing (VLHCC 2006). IEEE, 2006, pp. 195–202.

[32] G. C. Murphy, R. J. Walker, and R. Holmes, “Approximate structural
context matching: An approach to recommend relevant examples,” IEEE
Transactions on Software Engineering, vol. 32, pp. 952–970, 12 2006.

[33] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, and A. Marcus, “How
can I use this method?” in Proc. of the 37th IEEE/ACM Int. Conf. on
Software Engineering (ICSE 2015), 2015, pp. 880–890.

[34] S. Thummalapenta and T. Xie, “Parseweb: A programmer assistant for
reusing open source code on the web,” in Proc. of the 22nd IEEE/ACM
Int. Conf. on Automated Soft. Eng. (ASE). ACM, 2007, pp. 204–213.

[35] S. P. Reiss, “Semantics-based code search,” in Proc. of the 31st Int. Conf.
on Soft. Eng. (ICSE 2009). IEEE, 2009, pp. 243–253.

[36] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding relevant functions and their usage,” in Proc. of the
33rd Int. Conf. on Soft. Eng. (ICSE 2011). ACM, 2011, pp. 111–120.

[37] L. Ponzanelli, S. Scalabrino, G. Bavota, A. Mocci, R. Oliveto, M. D.
Penta, and M. Lanza, “Supporting software developers with a holistic
recommender system,” in Proc. of the 39th IEEE/ACM Int. Conf. on
Software Engineering (ICSE), May 2017, pp. 94–105.

[38] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd knowledge
for software comprehension and development,” in Proc. of the 17th
European Conf. on Soft. Maint. and Reeng., March 2013, pp. 57–66.

[39] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining StackOverflow to turn the IDE into a self-confident programming
prompter,” in Proc. of the 11th Working Conf. on Mining Software
Repositories (MSR 2014). ACM, 2014, pp. 102–111.

[40] M. P. Robillard, “What makes APIs hard to learn? Answers from
developers,” IEEE Software, vol. 26, no. 6, pp. 27–34, 2009.

[41] B. Dagenais and M. P. Robillard, “Creating and evolving developer
documentation,” Proc. of the 18th ACM SIGSOFT Int. Symp. on
Foundations of Software Engineering (FSE 2010), p. 127, 2010.

[42] M. P. Robillard and R. Deline, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[43] R. Plösch, A. Dautovic, and M. Saft, “The Value of Software Documen-
tation Quality,” in Proc. of the 14th Int. Conf. on Quality Software, oct
2014, pp. 333–342.

[44] G. Garousi, V. Garousi-Yusifoglu, G. Ruhe, J. Zhi, M. Moussavi, and
B. Smith, “Usage and usefulness of technical software documentation:
An industrial case study,” Information and Software Technology, vol. 57,
no. 1, pp. 664–682, 2015.

11



[45] G. Uddin and M. P. Robillard, “How API Documentation Fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, 2015.

[46] N. Alhindawi, O. M. Al-Hazaimeh, R. Malkawi, and J. Alsakran, “A
Topic Modeling Based Solution for Confirming Software Documentation
Quality,” Int. Journal of Advanced Computer Science and Applications,
vol. 7, no. 2, pp. 200–206, 2016.

[47] S. M. Sohan, F. Maurer, C. Anslow, and M. P. Robillard, “A study of the
effectiveness of usage examples in REST API documentation,” Proc. of
IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC, vol. 2017-October, pp. 53–61, 2017.

[48] J. D. Arthur and K. T. Stevens, “Document quality indicators: A
framework for assessing documentation adequacy,” Journal of Software
Maintenance: Research and Practice, vol. 4, no. 3, pp. 129–142, 1992.

[49] A. Dautovic, “Automatic assessment of software documentation quality,”
in 2011 26th IEEE/ACM Int. Conf. on Automated Software Engineering
(ASE 2011), nov 2011, pp. 665–669.

[50] T. C. Lethbridge, J. Singer, and A. Forward, “Use Documentation : The
State of the Practice Documentation,” Ieee Focus, p. 5, 2003.

[51] M. Visconti and C. R. Cook, “Assessing the State of Software Docu-
mentation Practices,” in Product Focused Software Process Improvement,
2004, pp. 485–496.

[52] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An exploratory analysis
of mobile development issues using Stack Overflow,” in Proc. of the
10th Working Conf. on Mining Software Repositories (MSR), May 2013,
pp. 93–96.

[53] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? An analysis of topics and trends in Stack Overflow,” Empirical
Softw. Eng., vol. 19, no. 3, pp. 619–654, Jun. 2014.

[54] C. Rosen and E. Shihab, “What are mobile developers asking about? A
large scale study using Stack Overflow,” Empirical Softw. Eng., vol. 21,
no. 3, pp. 1192–1223, Jun. 2016.

[55] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about?” IEEE Software, vol. 32, no. 3, pp. 70–77,
May 2015.

[56] “Replication Package,” https://github.com/REVEAL-ICSE19-DocIssues/
ReplicationPackage.

[57] I. Grigorik, “GitHub Archive,” https://www.githubarchive.org.
[58] GitHub, “Event Types & Payloads,” https://developer.github.com/v3/

activity/events/types/.
[59] A. S. Foundation, “Apache Mail Archives,” http://mail-archives.apache.

org/mod_mbox/.
[60] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,

“Recovering traceability links between code and documentation,” IEEE
Trans. on Soft. Eng., vol. 28, no. 10, pp. 970–983, 2002.

[61] R. Koschke, “Survey of research on software clones,” in Duplication,
Redundancy, and Similarity in Software, ser. Dagstuhl Seminar Proceed-
ings, no. 06301. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2007/962

[62] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk,
“A comprehensive model for code readability,” Journal of Software:
Evolution and Process, vol. 30, no. 6, 2018.

[63] J. Kincaid, R. Fishburne, R. Rogers, and B. Chissom, “Derivation of
new readability formulas (automated readability index, fog count and
flesch reading ease formula) for navy enlisted personnel,” Institute for
Simulation and Training, Tech. Rep., 1975.

[64] H. Zhong and Z. Su, “Detecting API documentation errors,” SIGPLAN
Not., vol. 48, no. 10, pp. 803–816, Oct. 2013.

ARTIFACTS’ REFERENCES

[65] “GitHub Issue of acid-state/acid-state.” http://bit.ly/2wokNDJ
[66] “GitHub Issue of rockstor/rockstor-core.” http://bit.ly/2wr2AFo

[67] “GitHub Issue of pluskid/mocha.jl.” http://bit.ly/2wop8H1
[68] “GitHub PR of silverstripe/silverstripe-framework.” http://bit.ly/

2wnCvXQ
[69] “Apache Mailing List httpd-docs.” http://bit.ly/2wqx4Y2
[70] “Apache Mailing List httpd-docs.” http://bit.ly/2wmverj
[71] “GitHub Issue of tinymce/tinymce.” http://bit.ly/2wmTIAB
[72] “GitHub Issue of mlpack/mlpack.” http://bit.ly/2wsvBAS
[73] “GitHub Issue of elliotchance/c2go.” http://bit.ly/2wmSk0T
[74] “GitHub PR of falconry/falcon.” http://bit.ly/2wixz6s
[75] “GitHub Issue of trilinos/trilinos.” http://bit.ly/2wmAM57
[76] “GitHub Issue of bytedeco/javacpp-presets.” http://bit.ly/2wnfqEF
[77] “GitHub Issue of nodemcu/nodemcu-firmware.” http://bit.ly/2wqzMgt
[78] “GitHub Issue of facebook/watchman.” http://bit.ly/2wpzpmb
[79] “Apache Mailing List forrest-dev.” http://bit.ly/2wr91Z6
[80] “GitHub PR of coreos/etcd.” http://bit.ly/2wr24aq
[81] “GitHub Issue of d3/d3-dispatch.” http://bit.ly/2wmBQWE
[82] “GitHub PR of alibaba/rax.” http://bit.ly/2wmk4TC
[83] “Apache Mailing List systemml-dev.” http://bit.ly/2wqU6y2
[84] “GitHub Issue of domaindrivendev/swashbuckle.” http://bit.ly/2wo2oa6
[85] “GitHub Issue of doctrine/doctrine1.” http://bit.ly/2wodZWN
[86] “GitHub Issue of webpack/docs.” http://bit.ly/2wmW56t
[87] “GitHub Issue of stevegrunwell/mcavoy.” http://bit.ly/2wp3QZB
[88] “GitHub PR of asciidoctor/asciidoctorj.” http://bit.ly/2woguZb
[89] “Apache Mailing List cocoon-docs.” http://bit.ly/2BJ8g3x
[90] “Apache Mailing List directory-dev.” http://bit.ly/2wvX1G3
[91] “GitHub Issue of revapi/revapi.” http://bit.ly/2wlugeZ
[92] “GitHub PR of habitat-sh/habitat.” http://bit.ly/2wogWql
[93] “GitHub Issue of riot-os/riot.” http://bit.ly/2wssVTQ
[94] “StackOverflow discussion 30596247.” http://bit.ly/2wrbAdG
[95] “GitHub Issue of realm/jazzy.” http://bit.ly/2wr2lKu
[96] “Apache Mailing List httpd-docs.” http://bit.ly/2wjbN2C
[97] “Apache Mailing List stdcxx-user.” http://bit.ly/2wmJDDN
[98] “Apache Mailing List hc-dev.” http://bit.ly/2woTcCj
[99] “Apache Mailing List httpd-docs.” http://bit.ly/2wlrsP5
[100] “GitHub PR of rails/rails.” http://bit.ly/2wmRKQL
[101] “GitHub PR of paulcollett/vue-masonry-css.” http://bit.ly/2wr28qG
[102] “GitHub PR of composewell/streamly.” http://bit.ly/2woqG3N
[103] “GitHub PR of facebook/react-native.” http://bit.ly/2wstqgG
[104] “GitHub Issue of commercialhaskell/stack.” http://bit.ly/2wkjxBu
[105] “StackOverflow discussion 532779.” http://bit.ly/2wnXfii
[106] “StackOverflow discussion 1136234.” http://bit.ly/2wp0wO7
[107] “StackOverflow discussion 48435375.” http://bit.ly/2wnz6bw
[108] “GitHub PR of uber/luma.gl.” http://bit.ly/2wooeKD
[109] “StackOverflow discussion 23900027.” http://bit.ly/2woWIwv
[110] “GitHub Issue of pinax/pinax-badges.” http://bit.ly/2wls0o7
[111] “GitHub PR of netflix/hollow.” http://bit.ly/2wqAcU5
[112] “Apache Mailing List camel-dev.” http://bit.ly/2wvWQun
[113] “StackOverflow discussion 45737685.” http://bit.ly/2wjeH7w
[114] “GitHub Issue of phpdocumentor/phpdocumentor2.” http://bit.ly/

2wlsTwR
[115] “StackOverflow discussion 23689297.” http://bit.ly/2MzKoVi
[116] “Apache Mailing List httpd-docs.” http://bit.ly/2wr9GK4
[117] “GitHub Issue of dvajs/dva.” http://bit.ly/2wotluk
[118] “Apache Mailing List tomee-dev.” http://bit.ly/2woTzwH
[119] “Apache Mailing List httpd-docs.” http://bit.ly/2wpwc67
[120] “GitHub PR of keratin/authn.” http://bit.ly/2wnBb7k
[121] “Apache Mailing List jclouds-user.” http://bit.ly/2wmxJtG
[122] “Apache Mailing List tomee-users.” http://bit.ly/2MJkxJJ
[123] “Apache Mailing List jena-dev.” http://bit.ly/2wquDoF
[124] “StackOverflow discussion 45342178.” http://bit.ly/2wluSBp
[125] “Apache Mailing List tuscany-user.” http://bit.ly/2wqudyB
[126] “Apache Mailing List systemml-dev.” http://bit.ly/2o7WupT
[127] “GitHub PR of prestodb/tempto.” http://bit.ly/2wp1ZnB

12

https://github.com/REVEAL-ICSE19-DocIssues/ReplicationPackage
https://github.com/REVEAL-ICSE19-DocIssues/ReplicationPackage
https://www.githubarchive.org
https://developer.github.com/v3/activity/events/types/
https://developer.github.com/v3/activity/events/types/
http://mail-archives.apache.org/mod_mbox/
http://mail-archives.apache.org/mod_mbox/
http://drops.dagstuhl.de/opus/volltexte/2007/962
http://bit.ly/2wokNDJ
http://bit.ly/2wr2AFo
http://bit.ly/2wop8H1
http://bit.ly/2wnCvXQ
http://bit.ly/2wnCvXQ
http://bit.ly/2wqx4Y2
http://bit.ly/2wmverj
http://bit.ly/2wmTIAB
http://bit.ly/2wsvBAS
http://bit.ly/2wmSk0T
http://bit.ly/2wixz6s
http://bit.ly/2wmAM57
http://bit.ly/2wnfqEF
http://bit.ly/2wqzMgt
http://bit.ly/2wpzpmb
http://bit.ly/2wr91Z6
http://bit.ly/2wr24aq
http://bit.ly/2wmBQWE
http://bit.ly/2wmk4TC
http://bit.ly/2wqU6y2
http://bit.ly/2wo2oa6
http://bit.ly/2wodZWN
http://bit.ly/2wmW56t
http://bit.ly/2wp3QZB
http://bit.ly/2woguZb
http://bit.ly/2BJ8g3x
http://bit.ly/2wvX1G3
http://bit.ly/2wlugeZ
http://bit.ly/2wogWql
http://bit.ly/2wssVTQ
http://bit.ly/2wrbAdG
http://bit.ly/2wr2lKu
http://bit.ly/2wjbN2C
http://bit.ly/2wmJDDN
http://bit.ly/2woTcCj
http://bit.ly/2wlrsP5
http://bit.ly/2wmRKQL
http://bit.ly/2wr28qG
http://bit.ly/2woqG3N
http://bit.ly/2wstqgG
http://bit.ly/2wkjxBu
http://bit.ly/2wnXfii
http://bit.ly/2wp0wO7
http://bit.ly/2wnz6bw
http://bit.ly/2wooeKD
http://bit.ly/2woWIwv
http://bit.ly/2wls0o7
http://bit.ly/2wqAcU5
http://bit.ly/2wvWQun
http://bit.ly/2wjeH7w
http://bit.ly/2wlsTwR
http://bit.ly/2wlsTwR
http://bit.ly/2MzKoVi
http://bit.ly/2wr9GK4
http://bit.ly/2wotluk
http://bit.ly/2woTzwH
http://bit.ly/2wpwc67
http://bit.ly/2wnBb7k
http://bit.ly/2wmxJtG
http://bit.ly/2MJkxJJ
http://bit.ly/2wquDoF
http://bit.ly/2wluSBp
http://bit.ly/2wqudyB
http://bit.ly/2o7WupT
http://bit.ly/2wp1ZnB

