
Software Documentation: The Practitioners’ Perspective
Emad Aghajani1, Csaba Nagy1, Mario Linares-Vásquez2, Laura Moreno3, Gabriele Bavota1, Michele

Lanza1, David C. Shepherd4
1: REVEAL @ Software Institute, USI Università della Svizzera italiana - Lugano, Switzerland
2: Systems and Computing Engineering Department, Universidad de los Andes, Colombia

3: Department of Computer Science, Colorado State University, USA 4: Virginia Commonwealth University, USA

ABSTRACT
In theory, (good) documentation is an invaluable asset to any soft-
ware project, as it helps stakeholders to use, understand, maintain,
and evolve a system. In practice, however, documentation is gener-
ally affected by numerous shortcomings and issues, such as insuffi-
cient and inadequate content and obsolete, ambiguous information.
To counter this, researchers are investigating the development of
advanced recommender systems that automatically suggest high-
quality documentation, useful for a given task. A crucial first step
is to understand what quality means for practitioners and what
information is actually needed for specific tasks.

We present two surveys performed with 146 practitioners to
investigate (i) the documentation issues they perceive as more
relevant together with solutions they apply when these issues arise;
and (ii) the types of documentation considered as important in
different tasks. Our findings can help researchers in designing the
next generation of documentation recommender systems.

CCS CONCEPTS
• Software and its engineering→ Documentation.
KEYWORDS
Documentation, Empirical Study

1 INTRODUCTION
A “software post-development issue” [13]. An after-thought, so to
speak. This is how the ACM Computing Classification Systems
(CCS) categorizes software documentation. Although peculiar, this
classification aligns well with the general perception that there are
more exciting things to do than documenting software, especially
if said software has already been developed.

Studies abound about software documentation being affected
by insufficient and inadequate content [2, 54, 55, 69], obsolete and
ambiguous information [2, 69, 71], and incorrect and unexplained
examples [2, 69], to name just a few issues. In contrast to this rather
sad status quo, not only are there studies that attest that documen-
tation is actually useful [8, 10, 14, 16, 55], but also there is that
thing called “common sense”: it simply makes sense to document
software—it is just not an activity enjoyed by many.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380405

Recent research initiatives [6, 56] have advocated for the devel-
opment of automated context-aware recommender systems that
automatically generate high-quality documentation, contextual to
any given task at hand. This has led to a first wave of automated
approaches for the generation and recommendation of documen-
tation (e.g., [23, 40, 44, 50, 57]). While the creation of such novel
systems entails conceptual and technical challenges related to the
collection, inference, interpretation, selection, and presentation of
useful information, it also requires solid empirical foundations on
what information is (or is not) useful when to developers.

To provide such foundations, we recently performed a study
to distill a large taxonomy of software documentation issues [2],
and inferred a series of proposals for researchers and practitioners.
While our taxonomy was promising, it had not been validated by
practitioners, making it mostly an academic construction without
the much needed reality check. In this work, our goal is to juxta-
pose our taxonomy with the documentation needs and priorities of
practitioners. The first contribution is thus an empirical validation
of the taxonomy to answer our first research question (RQ):
RQ1:What documentation issues are relevant to practitioners?

Previous studies on documentation that were run using surveys
with developers focused either on specific issues, e.g., using and
learning APIs [54, 55, 69], or were geared towards generic activities,
e.g., program understanding, development and maintenance [11,
16]. In contrast, our study provides a comprehensive view of the
documentation issues encountered by practitioners.

Moreover, since our goal is to further research in the context of
documentation recommender systems, the second contribution of
this paper is an insight into the types of documentation that practi-
tioners perceive as useful when confronted with specific software
engineering tasks. Therefore, we formulate our second RQ as:
RQ2: What types of documentation are perceived as useful by practi-
tioners in the context of specific software engineering tasks?

To answer these two research questions, we performed two sur-
veys with 146 professional software practitioners. In the first survey,
we focused on the documentation issues that practitioners perceive
as more relevant, together with the solutions they apply when these
issues arise. In the second survey, we studied the types of documen-
tation that practitioners consider important given specific tasks.
Most participants (125) are from ABB, a multinational corporation
active in automation technology, others (21) have been recruited in
specialized online forums. The result is a diversified population of
practitioners acting in various roles (e.g., developers, testers).

The body of knowledge provided by the findings of these surveys
will allow the research community to prioritize the practitioners’
needs and to orient future efforts for the design and development
of better automated documentation recommendation systems.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea E. Aghajani et al.

Table 1: Summary of previous studies about software documentation issues and relevant documentation types.

Study Scope Participants Summary of findings

Forward and
Lethbridge
(2002) [14]

Documentation tools 48 individuals in the software field
ranging from junior developers to
managers and project leaders

Documentation tools should seek to better extract knowledge from core resources, including the system’s source code,
test code and changes to both. Resulting technologies could then help reduce the effort required for documentation
maintenance.

Kajko-Mattsson
(2005) [25]

Documentation and
software maintenance

Developers of 18 Swedish organi-
zations

Documentation is usually neglected during corrective maintenance.

De Souza et al.
(2005) [11]

Documentation and
software maintenance

76 software maintainers Source code, code comments, data models, and requirement specification are perceived as the most important docu-
ments by maintainers.

Chen and Huang
(2009) [8]

Documentation and
software maintenance

137 project managers and software
engineers

Lack of traceability, untrustworthiness, and incompleteness are among the most important documentation issues for
maintainers.

Robillard (2009)
[54]

Documentation and
its effects on learning
APIs

80 professionals at Microsoft API learning resources are critically important when considering obstacles to learning the API. Information about the
high-level design of the API is necessary to help developers choose among alternative ways to use the API, to structure
their code accordingly, and to use the API as efficiently as possible. Code examples can become more of a hindrance
than a benefit when there is a mismatch between the tacit purpose of the example and the goal of the example user.

Dagenais and
Robillard (2010)
[10]

Maintenance/evolution
of documentation

22 developers or technical writers Updating documentation with every change leads to a form of embarrassment-driven development, which in turn
leads to an improvement in the code quality. Moreover, constant interaction with the projects’ community positively
impacted the documentation.

Robillard and De-
line (2011) [55]

Documentation and
its effects on learning
APIs

440 professional developers at Mi-
crosoft

Some of the most severe obstacles faced by developers learning new APIs pertained to the documentation and other
learning resources. Important factors to consider when designing API documentation: documentation of intent; code
examples; matching APIs with scenarios; penetrability of the API; and format and presentation.

Garousi et al.
(2013, 2015)
[15, 16]

Documentation and
software maintenance

25 professionals at NovAtel Developers tend to use design documents during the development phase, while code comments are considered the most
useful artifacts for maintenance. Readability, relevance of content, and organization are the quality attributes with the
strongest impact on the overall perceived quality of documentation.

Plösch et al.
(2014) [49]

Documentation qual-
ity

88 software development project
members of various software orga-
nizations

Accuracy, clarity, consistency, readability, structuredness, and understandability are considered the most important doc-
umentation attributes. Documentation standards (e.g., IEEE Std.1063-2001, ISO 26514:2008) are not perceived as impor-
tant by developers.

Uddin and Robil-
lard (2015) [69]

Common documenta-
tion problems

323 IBM software professionals Cataloged and examined how ten common documentation problems manifested themselves in practice assessed those
problems’ frequency and severity. The most pressing problems were related to content, as opposed to presentation.

Sohan et al.
(2017) [61]

Examples in API docu-
mentation

26 software engineers REST API client developers face productivity problems with using correct data types, data formats, required HTTP
headers and request body when documentation lacks usage examples.

2 RELATEDWORK
The two major lines of research related to our work are devoted
to (i) developing tools and approaches to automatically generate
or recommend documentation, and (ii) empirically investigating
different documentation aspects (e.g., quality) and their impact.

Concerning the development of automated approaches, repre-
sentative examples are the summarization techniques that pro-
vide abstractive and/or extractive summaries of software artifacts
such as bug reports [36, 37, 52], classes and methods [19, 34, 38–
40, 44, 58, 63], unit tests [29, 30, 48], code changes [9, 24, 32, 46, 47],
user reviews [12], code snippets [72], and user stories [28]. Equally
important are recommenders that support developers in finding
APIs and code usage examples [21, 22, 31, 45, 64], code fragments
implementing specific features [41, 51, 53, 66] or generally useful
crowdsourced knowledge for a given implementation task [50].

Closer to our work is the empirical research on software docu-
mentation aspects, particularly the studies that interview or survey
software practitioners. An overview of these studies is presented
in Table 1. While some of them examine the importance and us-
age of documentation in specific phases of the software lifecycle
[8, 11, 15, 16, 25], their focus is on general software engineering
activities (e.g., maintenance), as opposed to the specific tasks (e.g.,
refactoring, debugging) that we investigate in our study. Moreover,
the variety of tasks and documentation types that we consider is un-
matched and provides empirical knowledge still needed to further
research on context-aware recommendation systems [6, 56].

Also related is the body of research that uses mining-based strate-
gies to identify documentation issues discussed by practitioners [2],
developers [5, 33, 59], or application users [26]. This body includes
our extensive taxonomy of 162 types of issues faced by developers
and users of software documentation [2].

We use our previous work [2] as starting point to assess the
relevance of the documentation issues that compose the taxonomy,
which was neglected in our previous study. In other words, while
in that study our main target was the definition of a comprehensive
taxonomy of documentation issues, in this work, our goal is to
understand whether (and which of) those issues are relevant to
practitioners. Compared to other existing work investigating doc-
umentation issues from the practitioners’ perspective [54, 55, 69],
instead of focusing on a specific type of documentation (i.e., API
documentation), we consider a wide set of 51 documentation issues
affecting various kinds of documentation.

Also worth mentioning is the mapping study by Zhi et al. [73]
that reviews 69 documentation-related papers from 1971 to 2011.
As a result, it was found that completeness, consistency, and acces-
sibility are the most frequently discussed documentation quality
attributes in the existing literature. Two conclusions are derived
from that study: (i) some documentation aspects such as quality,
benefits, and cost are often neglected; and (ii) more estimation
models and methods are needed. Finally, Zhi et al. call for more
and stronger empirical evidence, larger-scale empirical studies, and
more industry-academia collaborations to investigate the software
documentation field. Our study goes exactly in this direction.

3 STUDY DESIGN
The goal is to investigate the perception of practitioners of (i) the
relevance of documentation issues, and (ii) the usefulness of dif-
ferent types of documentation in the context of specific tasks. The
study context consists of objects, i.e., two surveys designed to inves-
tigate the study goals, and subjects (referred to as “participants”),
i.e., 146 practitioners, 125 employed in ABB corporation, and 21
recruited in specialized online forums.

Software Documentation: The Practitioners’ Perspective ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

3.1 Research Questions
We aim at answering the following research questions:

RQ1: What documentation issues are relevant to practitioners?
This research question builds on our taxonomy of documentation
issues [2], which consists of 162 issues derived from the qualitative
analysis of 878 documentation-related artifacts (e.g., Stack Overflow
discussions, pull requests). Although our taxonomy seems compre-
hensive, we did not investigate which documentation issues are
actually relevant to practitioners. RQ1 aims at filling this gap. Know-
ing the documentation issues that practitioners consider relevant
can guide researchers in the development of techniques/tools aimed
at identifying and possibly fixing these issues, rather than others
not relevant to practitioners. It could also inform documentation
writers and maintainers about quality attributes of documentation
that must be prioritized.

RQ2: What types of documentation are perceived as useful by
practitioners in the context of specific software engineering tasks?
This research question studies the types of software documentation
(e.g., code comment, release notes) that are considered useful by
practitioners when performing a specific software-related activity
(e.g., code refactoring, debugging). This information is essential
in the design of the next generation of software documentation
recommender systems, whose goal is to automatically generate
documentation customized for a given task [6, 56]. RQ2 can shed
some light on the type of information and documentation needed
by practitioners under specific scenarios.

3.2 Context Selection: Surveys & Participants
Surveys. Figure 1 depicts the flow of our two surveys. The num-
bered white/gray boxes depict steps in which participants answer
questions, and the black boxes represent either static information
pages or an activity automatically performed by the survey ap-
plication to select the next question to ask. The gray dashed box
represents a loop of questions/answers performed repeatedly.

Both surveys have been implemented in Qualtrics (https://www.
qualtrics.com) and start with a welcome page explaining the goal
of the study, that the surveys are anonymous, and that they are
designed to last ca. 15 minutes each. Once the participant agrees
to start, both surveys show a form with basic demographic ques-
tions. In particular, we ask the participant’s role in the software
projects they contribute to (e.g., developer, tester) and their years
of experience in programming on a four-point scale: <3 years, 3-5
years, 5-10 years, >10 years. Once done with the collection of the
demographic information, the two surveys differ (see Figure 1).
Survey-I. To design Survey-I (Figure 1-a), we revisited our taxon-
omy of 162 documentation issues (see Figure 1 in [2]) and identified
the issues to be considered in our survey. This taxonomy is orga-
nized into four categories:
(1) Information Content (What) refers to problems with the doc-

umentation content (i.e., “what” is written in the documentation).
This is the predominant category in the taxonomy, with 55% of
the analyzed documentation-related artifacts discussing these
issues. It is organized into three subcategories: Correctness issues
(e.g., erroneous code examples), Completeness issues (e.g., miss-
ing code behavior clarifications), and Up-to-dateness issues (e.g.,
behavior described in the documentation is not implemented).

Welcome page Insert demographic
information

Select the most important
issues

Pick up to 2 more frequently
faced issues

Survey randomly selects one of
the issues selected by
participant in step 3

Answer detailed questions
about the selected issue

2

3

4fo
r e

ac
h

m
ac

ro
 c

at
eg

or
y

of
 d

oc
um

en
ta

tio
n

is
su

es
,

i.e
.,

In
fo

rm
at

io
n

C
on

te
nt

 (W
ha

t),
 In

fo
rm

at
io

n
C

on
te

nt

(H
ow

),
an

d
Pr

oc
es

s/
To

ol
 R

el
at

ed

(A) Survey-I
Documentation issues

Survey-II (B)
Task-specific documentation

Welcome page Insert demographic
information

Pick up to 3 activities in which
DT is more useful 2

fo
r t

w
o

ra
nd

om
ly

 s
el

ec
te

d
do

cu
m

en
ta

tio
n

ty
pe

 D
T

Explain why DT is useful in the
context of A

List the DT’s information items
particularly useful for A

fo
r e

ac
h

ac
tiv

ity
 A

 s
el

ec
te

d
by

th

e
pa

rti
ci

pa
nt

3

4

1 1

Figure 1: Design of the two surveys used in our study.

(2) Information Content (How) relates to “how” documentation
is written and organized, and appears in 29% of the analyzed
artifacts. Its subcategories capture issues with different doc-
umentation quality attributes, including Maintainability (e.g.,
cloned documentation), Readability (e.g., confusing documenta-
tion title), Usability (e.g., poor support for navigating the doc-
umentation), and Usefulness issues (e.g., code example needs
improvement to become useful).

(3) Process Related groups issues linked to the documentation pro-
cess, which were found in 9% of the analyzed artifacts. The issues
in this category are organized into five subcategories, namely,
Internationalization (e.g., missing translation for a language),
Contributing to Documentation (e.g., unclear how to report is-
sues found in the documentation), Doc-generator Configuration
(e.g., ignored Javadoc warnings), Development issues caused by
documentation (e.g., problems introduced by autogenerated com-
ments), and missing Traceability information.

(4) Tool Related refers to issues associated with documentation
tools, which were discussed in 15% of the analyzed artifacts. Sub-
categories include Bugs in documentation tools, lack of Support,
unmet feature Expectations, usage difficulties (aka Help required),
and Migration problems across different tools.

The taxonomy is hierarchically organized, meaning that each
category (e.g., Information Content (What)) contains subcategories
(e.g., Correctness) further organized into subcategories on many
levels (e.g., Correctness includes five subcategories, one of which is
further organized into two subcategories, leading to a total of four
hierarchical levels).

Considering all the types of documentation issues composing
the taxonomy [2] was not an option for our study. Indeed, asking
a participant to read the complete list of 162 issues and pick the
ones that are more relevant is excessive and would have led to a
substantial increase in the survey abandonment rate.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea E. Aghajani et al.

For this reason, we limited the number of documentation issues
considered in Survey-I by adopting the following process. First, we
organized the survey into three parts: Part I focuses on issues related
to Information Content (What); Part II concentrates on Information
Content (How) issues; and Part III investigates Process-Related and
Tool-Related issues, together. Second, given the hierarchical organi-
zation of the taxonomy, we grouped together documentation issues
that are very similar and share the same parent category, with
the goal of reducing the overall number of issues to investigate.
For example, in our taxonomy [2], issues related to inconsistency
between code and documentation (i.e., the code implements a be-
havior different from the one described in the documentation) are
categorized into two subcategories, namely behavior described in the
documentation is not implemented, and code must change to match
the documentation. We decided to only consider the parent category,
Code-documentation inconsistency. This grouping was done by two
of the authors, and reviewed in multiple rounds by other three
authors until agreement was reached.

The complete list of considered issues is available in our replica-
tion package [1]. Overall, we summarized the 162 issues from the
original taxonomy into 51 documentation issues: 22 in the Informa-
tion Content (What) category, 12 in the Information Content (How)
category, and 17 in the combined Process/Tool Related category.

For each of the three parts of Survey-I, we show the list of related
issues to the participant, asking them to select via checkboxes the
ones they perceive as major issues (step 2 in Figure 1-a). When
hovering the mouse over the name of a specific issue, its brief
definition pops up. We also provide an open field “Others”, in which
the participant could list documentation issues that were not listed
in the predefined options. After that, we show the list of issues
selected in the previous step as being important, but this time we
ask them to select up to two issues that they face most frequently
when reading/writing documentation (step 3). Given this selection,
the survey platform randomly picks one of the issues selected in
step 3 to collect detailed information about it. In particular, we ask
in step 4 : (i) whether the specific issue concerns more the readers
or the writers of the documentation, with possible choices on a five
point scale (i.e., only readers, mostly readers, equally both, mostly
writers, only writers); (ii) how frequently the issue is encountered
by the participant (possible choices: every day, 2-3 times per week,
once a week, less often than once a week, never); (iii) what the
solution is for the specific issue (open answer); and (iv) to describe
the situation in details (optional, open answer). Note again that
steps 2 to 4 were performed three times, one for each macro
category of documentation issues.
Survey-II. Concerning the second survey (Figure 1-b), since our
goal is to investigate the types of documentation useful in different
software engineering tasks, we had to define the list of documenta-
tion types and tasks to consider. In the case of the documentation
types, we started again from our taxonomy [2]. For each of its
162 documentation issue types, we annotated any type of docu-
mentation mentioned, e.g., from the taxonomy node Inappropriate
installation instructionswe extracted the installation guide documen-
tation type. The resulting list was then complemented and refined
through face-to-face meetings among three of the authors. In par-
ticular, documentation types missing in the taxonomy but known
to the authors were added, which led to the final list consisting of:

API Reference, Code Comment, Contribution Guideline, Deployment
Guide, FAQ, How-to/Tutorial, Installation Guide, Introduction/Get-
ting Started Document, Migration Guide, Release Note/Change Log,
User Manual, Video Tutorial, and Community Knowledge. For each
documentation type, we provided a description and examples of
information items usually contained in it. For example, the docu-
mentation type Code Comment is described as “Code Comments
summarize a piece of code and/or explain the programmer’s intent”;
and the corresponding text for examples of information items is
“Comments used to describe the functionality & behavior of a piece
of code, the parameters of a function, the purpose and rationale for
a piece of code”. The descriptions and information items for all the
documentation types can be found in our replication package [1].

Concerning the software engineering tasks, we started from
the list of activities reported in the Software Engineering Body
of Knowledge (SWEBOK) version 3.0 [7]. We went through the
SWEBOK knowledge areas (e.g., requirements, construction, main-
tenance) looking for activities that require, involve or produce docu-
mentation. The initial list was discussed by all authors to refine the
terms for better comprehension of the participants when reading
the survey. The final list of tasks used in Survey-II consists of: Re-
quirements Engineering, Software Structure and Architecture Design,
User Interface Design, Database Design, Quality Attributes Analy-
sis and Evaluation, Programming, Debugging, Refactoring, Program
Comprehension, Reverse Engineering and Design Recovery, Software/-
Data Migration, Release Management, Dealing with Legal Aspects,
Software Testing, and Learning a New Technology/Framework.

Once we defined the types of documentation and the tasks, we
designed the survey. In Survey-II, after filling up their demographic
information, the participant is shownwith the name and description
of a randomly selected documentation type DT . The survey asks
the participant to select up to three software-related activities in
which DT is considered more useful (step 2 in Figure 1-b). For
each selected activity A, two open questions are asked: (i) explain
why DT is useful in the context of A (3 in Figure 1-b); and (ii) list
the information items in DT that are particularly useful for A (4
in Figure 1-b). Step 2 and the loop including steps 3 and 4 are
performed twice for two randomly selected documentation types.

We tested both surveys with four developers and four PhD stu-
dents to check that the questions were clear and that each survey
could be completed within 15 minutes, a duration agreed upon
with the partner company. As a consequence of this pilot study,
we rephrased a number of questions and set the “thresholds” used
in our surveys (e.g., only ask detailed questions about one of the
issues selected by participant in step 3 of Survey-I).

Participants.We started by collecting answers from the prac-
titioners of the partner company. We invited participants via an
email that summarized the goal of the study and contained the link
to our surveys. There was a single link to both surveys, but the
application automatically assigned a participant to one of them,
balancing the number of data points per survey.

As a first test batch, we invited 160 practitioners collecting 21
responses. As no problems were detected, we emailed the invitation
to 1,500 practitioners and posted an announcement on the Yammer
service of the company. We received 104 additional answers, lead-
ing to a total of 125 completed surveys (incomplete surveys were
discarded), 65 for Survey-I and 60 for Survey-II.

Software Documentation: The Practitioners’ Perspective ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Computing a response rate for our study is difficult due to the
posted announcement, and to the fact that the surveywas conducted
over the summer. Assuming that all the 1,660 practitioners received
and opened our email, and ignoring that other practitioners were
possibly reached through the Yammer service, this would result in
a 9.5% response rate, which is in line with the suggested minimum
response rate of 10% for survey studies[17]. We collected a slightly
higher number of responses for Survey-I as compared to Survey-II
(i.e., 65 vs 60). This is due to the fact that some participants started
the study simultaneously (thus being equally distributed across the
two different surveys by the platform), but some of them did not
finish the assigned survey, thus unbalancing the final numbers.

We also posted the link to our survey on social websites ori-
ented to developers and programming. This allowed us to collect
21 additional complete answers, leading to the final 146 answers to
our surveys, 78 to Survey-I and 68 to Survey-II. An overview of the
surveyed participants and their experience is depicted in Table 2.

Table 2: Participants roles & programming experience

Role Population <3y 3-5y 5-10y >10y

Developer 55 12 8 10 25
Architect/Technical Engineer 26 1 1 2 22
Technical Lead 19 0 0 6 13
Test Analyst/Tester/Test Engineer 11 1 0 7 3
Others 35 4 2 4 25

146 18 11 29 88

3.3 Data: Analysis & Replication Package
Analysis. We answer RQ1 by relying on descriptive statistics. For
each of the predefined documentation issues and for those added
through the “Other” field, we report the percentage of participants
that perceives it as an important concern. We also report on how
frequently participants face the issues considered as important,
and whether they affect more documentation readers or writers.
Moreover, we qualitatively discuss interesting cases shared by par-
ticipants about real instances of these issues and the solutions they
adopted to address them. To analyze the participants’ solutions
(4 in Figure 1-a), we followed an open-coding inspired approach,
where two of the authors independently assigned a tag to each
of the 101 answers that described solutions to documentation is-
sues. The tag was meant to summarize the described solution (e.g.,
improve project management practices derived from “Specifically
allocate efforts for documentation in the task planning”). Conflicts
were solved through a face-to-face meeting.

To answer RQ2, we analyze a heat map (Figure 3) depicting,
for each activity type (rows), the percentage of participants that
indicated each documentation type (columns) as useful in that
context. Then, we qualitatively discuss the reasons provided by
participants (3 in Figure 1-b) to explain why a documentation
type is useful during a specific activity. For each documentation
type, we also report the information items listed by participants as
particularly useful in each of the software engineering tasks that
we investigated.

Replication Package. All material and data used to run our
study as well as the developers’ anonymized answers are available
in our replication package [1].

4 WHAT DOCUMENTATION ISSUES ARE
RELEVANT TO PRACTITIONERS?

Figure 2 summarizes the responses collected for Survey-I.We discuss
the practitioners’ perspective about the documentation issues listed
in the three main categories (i.e., “Information Content (What)”,
“Information Content (How)”, and “Process/Tool Related”). We high-
light lessons learned and recommendations for researchers (�), and
confirm/refute previous findings reported in the literature (®).
Information Content (What). We observe in Figure 2 that all
issues in this category are perceived as important by practitioners.

® This result is in line with previous studies [8, 69] that under-
lined the relevance of correctness, completeness, and up-to-dateness
issues in documentation.

Regarding the Correctness subcategory, all its issues exceptwrong
translation were considered to be important by at least half of the
surveyed participants. Among them, inappropriate installation in-
structions was the most frequently encountered issue and, together
with faulty tutorial, the one considered relevant by most practition-
ers (65% of them). Participants suggested a few possible solutions
for this issue, such as performing reviews on the installation instruc-
tions by both internal team members and external users, who can
provide feedback about the quality and usefulness of the document.
Lightweight virtualization approaches (e.g., Docker containers) can
support practitioners in the creation of diverse reusable deployment
environments to test installation instructions.

�
The fragmentation problem of running environments for
software is well-known (see the case of the Android ecosys-
tem [20, 35]), which might lead to unexpected race condi-
tions or compilation issues under specific platforms [67].
Research efforts could be devoted to (automated) testing of
installations instructions under different environments, or
automated generation of installation instructions. Our sur-
vey shows that this is an area of interest to practitioners,
and even limited support for testing installation instruc-
tions across diverse environments would be welcome.

Wrong code comments is perceived as important by almost half
(i.e., 49%) of the surveyed practitioners. Besides the obvious (fixing
the comment), practitioners also suggested to train the comments’
writers, particularly in their technical English language skills.

�
Code comments can be incorrect due to inaccurate informa-
tion, as well as to the writer’s inability to clearly describe a
code fragment or change rationale in English. This is con-
firmed by the answers to the wrong translation issue. Some
participants attributed it to documentation sometimes writ-
ten by non-native English speakers. A suggested solution is
to host the documentation on collaborative platforms (e.g.,
Wikis) or code-sharing platforms (e.g., GitHub), encourag-
ing and enabling external contributors to add new content
or (recommend how to) fix errors in the documentation.

Erroneous code examples were also recognized as an important
issue by the surveyed participants (59% of them). It is well-known
that code examples are a main information source for developers
[55]. Facilitating error reporting, e.g., by adding a comment section
below each documentation page, was a suggested solution.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea E. Aghajani et al.

Information Content (What)
Correctness

Completeness

Up-to-dateness

Information Content (How)
Maintainability

Readability

Usability

Usefulness

Process/Tool Related
Documentation process

Documentation tools

% important % frequently faced
Q1 Q2 Q3 Q4

solutions
S1 S2 S3 S4 S5 S6

Erroneous code examples 59%

Faulty tutorial 65%

Inappropriate installation instructions 63%

Wrong translation 21%

Other correctness issues 5%

Developer guidelines 60%

Installation, deployment, & release 68%

Missing code behavior clarifications 37%

Missing diagrams 35%

Missing links 26%

Missing user documentation 65%

Other completeness issues 8%

Code-documentation inconsistency 59%

Missing documentation for a new release 53%

Outdated example 51%

Outdated installation instructions 54%

Outdated license/copyright information 26%

Outdated screenshot 29%

Outdated translation 19%

Outdated version information 32%

Other Up-to-dateness issues 3%

Clone/Duplicate content 46%

Lengthy files 35%

Superfluous content 55%

Clarity 88%

Conciseness 49%

Spelling and grammar 23%

Accessibility/findability 65%

Excessive website load-time 17%

Format/presentation 33%

Violation of best practices in example code 26%

Content is not useful in practice 59%

Lack of time to write documentation 65%

Missing translation for a language 0%

Reporting issues found in documentation 44%

Supporting external contributors 10%

Organization of documentation files 40%

Traceability 35%

Bug in the tool 15%

Help required on how to use the tool 12%

Lack of/Poor automatization 29%

Missing feature of a tool 23%

Outdated documentation tool 23%

Receiving error/warning messages 12%

Tool migration 8%

Q1 Q2 Q3 Q4 S1 S2 S3 S4 S5 S6

Q1 Q2 Q3 Q4 S1 S2 S3 S4 S5 S6

Q1 Q2 Q3 Q4 S1 S2 S3 S4 S5 S6

Q1 Q2 Q3 Q4 S1 S2 S3 S4 S5 S6

Q1 Q2 Q3 Q4 S1 S2 S3 S4 S5 S6

Q1 Q2 Q3 Q4 S1 S2 S3 S4 S5 S6

Q1 Q2 Q3 Q4 S1 S2 S3 S4 S5 S6

Q1 Q2 Q3 Q4 S1 S2 S3 S4 S5 S6

Missing documentation for a new feature/component 69%Missing documentation for a new feature/component

Legend

“% important” reports the
percentage of surveyed
practitioners that indicated the
related issue as an important
one.

“% frequently faced” indicates
how frequently faced is an
issue type by the surveyed
practitioners. Since
participants were only allowed
to pick up to two frequently
faced issues (see design of
Survey-I), this resulted in a
lower number of data points
as compared to the ones
available for the “% important”
question. For this reason, we
preferred to report these
results in quartiles rather than
in percentage. We computed
the number of participants
reporting each issue as
frequently faced and, based on
this distribution, we assigned
each issue to a quartile (Q1-
Q4). For example, Q1 identifies
the bottom 25% of issue types
in terms of the frequency with
which developers face them. If
an issue is not assigned to any
quartile (i.e., all four rectangles
are empty) it means that none
of the practitioners mentioned
the related issue as frequently
faced.

“solutions” report, for each
issue, the top-1 (black square)
and the top-2 (grey square)
solution most mentioned by
practitioners. The solutions
(S1-S6) are the output of the
open coding process described
in the design section (i.e.,
those mentioned at least five
times by practitioners). While
other solutions have been
mentioned, they are excluded
from this summary figure since
quite rare. In the following, the
mapping of the solution ids to
the real labels:

S1: Improve process practices

S2: Documentation testing

S3: Fix the issue in the
documentation

S4: Improve project
management practices

S5: Allocate budget to improve
the documentation

S6: Improve the
documentation structure

In case only one solution was
mentioned, no grey square is
present. In case none of the
solutions mentioned for the
issue belongs to the top-6
mentioned, all rectangles are
white. In case of a tie for the
top-used solution, multiple
black rectangles are used.

Wrong code comments 49%

Missing code comments 0%28%

Outdated/Obsolete references 0%64%

Other maintainability issues 3%

Other readability issues 4%

Information organization 0%49%

Other usability issues 4%

Other usefulness issues 5%

Difficulty in translating to a language 6%

Issues with character encoding 3%

Other process-related issues 3%

Excessive output size 6%

License of documentation tool is expired 3%

Figure 2: Documentation issues that are relevant to practitioners (RQ1), according to the results of Survey-I.

Software Documentation: The Practitioners’ Perspective ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

®We [2] suggested the development of testing techniques tai-
lored to code examples. Testing activities on code examples, how-
ever, were not mentioned by the surveyed developers.

Among the issues related to Completeness, the lack of installation,
deployment, & release instructions, user documentation (e.g., user
manual), and developer guidelines were considered important by
a majority (respectively 68%, 65% and 60%), and are frequently
encountered issues. Practitioners highlighted the importance of
considering the creation of these types of documentation as first-
class citizens, and suggested to include these documentation types
as mandatory items in the release checklist and allocate project
budget and a dedicated team to fundamental documentation items.

�
Increasing the budget dedicated to documentation was a
recurring solution often mentioned by participants. This
suggests that software documentation does not receive the
attention it deserves when planning and allocating soft-
ware resources. This finding is relevant to software effort
estimation models [43] that should explicitly consider the
cost of documentation as one of the factors impacting the
final effort needed to build a software system.

The low number of participants (28% of them) who indicated
missing code comments as a major concern was unexpected. Pre-
vious studies [11] confined the importance of code comments to
general software engineering activities. Some practitioners attrib-
uted missing comments to understaffed projects, where the team
tends to focus more on coding rather than on documenting. How-
ever, they highlighted the need for “instilling discipline into the
team and encouraging writing code comments as a good coding prac-
tice” . Practitioners also indicated the need for automation in code
comment generation, e.g., generating templates for bootstrapping
the writing process and/or automatically generating (part of) code
comments. The latter is an active research area [29, 30, 34, 38–40]
and a roadmap has been proposed by Robillard et al. [56].

® The results of our survey confirm the potential and need of
automated documentation generation techniques. An exception
was an answer provided by a practitioner advocating for writing
code in a “self-explanatory way, with as few comments as possible” .

Automated tools are also invoked by practitioners to address
issues caused by missing diagrams. One of them suggested that “it
should be easier to create graphs/diagrams from the text” .

�
While approaches for generating diagrams from low-level
artifacts (e.g., source code) exist (see, e.g., [27]), practition-
ers call for approaches that support the extraction of di-
agrams (e.g., components diagrams) from high-level text-
based artifacts (e.g., requirements). The development of
these techniques poses interesting research challenges,
such as the identification of components needed to imple-
ment a given requirement as well as their interactions. This
represents an interesting direction for future research.

Regarding Up-to-dateness issues, the lack of documentation for a
new feature/component was not only the one considered important
by most participants (69% of them) but also the most recurring issue
in this subcategory. Practitioners tend to resort to external sources
of information to understand the new feature, or to contact the
appropriate parties (i.e., the team who developed the feature) to

ask for explanations. One participant stressed the importance of
documenting code implementing new features by using concrete
examples: “some parameters are impossible to understand without
documentation, and documentation is often not very good” . Here, au-
tomated documentation tools appear again as a solution to enable
automated refactoring of documentation, and up-to-date documen-
tation generation as part of continuous integration pipelines.

Inconsistency between code and documentation was also per-
ceived as an important issue by practitioners (59% of them) and is
one of the top recurring issues they face.

® This observation is in line with previous studies [8, 49, 69],
which found documentation consistency to be a major issue. The
most common up-to-dateness documentation issues involve code
comments, which might not reflect changes implemented in the
code [71]. An interesting observation is related to the maintainabil-
ity of code comments: One practitioner highlighted that a solution
for up-to-dateness issues is to limit code comments to the mini-
mum needed, so it is simpler to co-evolve them with code (i.e., if a
comment documents useless details, it is more likely that changes
implemented in the code will impact it).

�
The research community has focused on the generation of
code comments, while our survey points to the need for
approaches that identify redundant and/or unnecessary
code comments that increase the comment maintenance
cost. Maintainability of comments is a real concern.

While other Up-to-dateness issues were considered important
by practitioners (see Figure 2), exceptions to this trend were: out-
dated license/copyright information, outdated screenshot, outdated
translation, and outdated version information.

Summing up. In the Information Content (What) category, 7 out of
23 (30%) documentation issues from our taxonomy [2] are perceived
as important by the majority (≥60%) of surveyed practitioners (e.g.,
faulty tutorial, inappropriate installation instructions, missing docu-
mentation for a new feature/component). Instead, nine issues (39%)
are considered relevant by less than 40% practitioners—see e.g.,
wrong translation, outdated screenshot, outdated license. This is a
first indication that, despite the comprehensiveness of our taxon-
omy [2], the research community could prioritize selected issues
that are actually relevant to practitioners.
Information Content (How). This category of issues is related to
the way documentation content is written and organized. Regarding
Maintainability issues, practitioners considered superfluous content
(55% of them) and clone/duplicate content (46%) the main sources
of concern. This observation is in line with our previous study [2],
which reports that these two subcategories are responsible for ∼71%
of developers’ discussions on maintainability of documentation.

�
Given the frequency of these issues [2] and their relevance
to practitioners, the research community could leverage
existing technologies to provide (even partial) solutions.
For example, as code clone detection approaches have been
defined in the literature [60], similar techniques using nat-
ural language processing could be developed to identify
(and suggest how to refactor) cloned content in software
documentation.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea E. Aghajani et al.

�
In the case of superfluous content, a compelling next step
would be to qualitatively study this type of content to
develop techniques for its automatic detection (similarly
to the work in code smell detection, with a combination of
empirical studies [68] and detection techniques [42]).

Concerning Readability, documentation clarity is the issue per-
ceived as most important by practitioners (88% of them), as it affects
them in many ways (e.g., “A developer in our team created confusing
and overly complicated documentation for customers of our solution” ,
“We experienced this issue when deploying an app that was built by
a third party that no longer supports us; the documentation they
provided is not clear on how to configure it properly”).

® Previous studies also reported the importance of Readability
[15, 16, 49, 49] and Understandability [49].

To deal with this issue, a number of solutions were proposed by
participants. First, documentation writers should always keep in
mind the actual documentation users and their needs when writing
a document. Second, documentation should be tested by someone
with little domain knowledge. For example, if the documentation
at hand is an installation guide, it should be tested by users of the
system rather than a development team member. This, according to
the practitioners, would help in promoting documentation clarity.
Moreover, one participant stressed the importance of selecting es-
sential information items in the documentation, highlighting them,
and investing in their writing. Our second research question investi-
gates the information items, from different types of documentation,
that are more useful during specific software engineering activities.

In the Usability subcategory, issues related to accessibility/find-
ability and information organization are considered important by
practitioners (65% and 49% of them, respectively), while others (e.g.,
excessive website load-time, violation of best practices in example
code) are not perceived as such.

® These findings are in line with our previous results [2]. Other
previous works [15, 16, 49, 69] have revealed the importance of
documentation organization and its impact on content findability,
confirming the relevance of these issues.

�
Studies on how users interact with and search documen-
tation could help the research community to define clear
guidelines on how different types of documentation should
be organized to address accessibility/findability issues.

Format/presentation issues in the documentation are frequently
encountered by practitioners who, however, do not consider them
as a major issue (only 33% of the participants perceived them as
important). The most common suggested solution for this type of
issues is to provide documentation guidelines and standard tem-
plates. Tools to validate documentation format and adherence to a
predefined template would be useful in this context.

In the Usefulness subcategory, 59% of the surveyed practitioners
considered content is not useful in practice as a major and frequent
issue. Reviewing the documentation before release, and providing
more in-depth details and practical examples were suggested solu-
tions to deal with this issue. The prevalence of this usefulness issue
stresses further more the importance of our second research ques-
tion, i.e., knowing the information items that are actually useful for
practitioners can help in avoiding useless content.

Summing up. In the Information Content (How) category, only 2
out of 12 (17%) documentation issues from our taxonomy [2] are
perceived as important by at least 60% of surveyed practitioners
(i.e., clarity and accessibility/findability).
Process/Tool Related. Compared to the previous two categories,
developers found issues related to the documentation process and
tools less important (see Figure 2). One substantial difference be-
tween this category and the previous two is that, as indicated by
participants, issues in this category mostly affect documentation
writers, while both writers and readers are affected by most of the
issues in the other categories.

Lack of time to write documentation is the only issue in this cate-
gory that was indicated as important by the majority (65%) of par-
ticipants. Also, it is a frequently encountered issue. The proposed
solutions boil down to: (i) explicitly allocating time/effort/resources
to documentation in the project planning; and (ii) starting docu-
mentation activities in the early stage of the software lifecycle, to
avoid situations such as the one described by a practitioner: “The
documentation team comes into picture only at the last moment be-
fore the release” . The consequences of inadequate documentation
planning were also stressed by another practitioner: “Projects were
built without providing documentation; as time passes aspects of the
project are forgotten which makes revisiting the project when updates
or modifications need to be made more difficult” . As highlighted
by a respondent, “when estimating time to complete a project, it is
important to make sure that documentation is counted in” .

Among other Process/Tool Related issues, poor organization of doc-
umentation files and traceability issues were frequently encountered
by developers, even though only 40% and 35% of them, respectively,
considered these issues important.

�
Lack of traceability in documentation has also been re-
ported in previous work [8]. This issue could be addressed
by investing in professional tools that integrate traceability
recovery techniques proposed in the literature [4].

Regarding Documentation tools issues, the lack of/poor automati-
zation was the only issue frequently faced by practitioners. Smarter
tools, better IDE integration, and automated generation of docu-
mentation were the common requests in this context.

�
The need for automation can be justified by the lack of time
issue discussed above. The research community is already
investigating novel techniques for the automatic genera-
tion of documentation [56], and our survey confirms the
practical relevance of this research area to practitioners.

Participants mentioned other tool-related issues, such as the
lack of training for teams or the lack of good tool support for
some languages: “Writing good docs for C/C++ is hard; there are no
tools that capture function/class semantics [...]; this would allow the
automation of at least a part of the doc writing process” .

Summing up. Concerning the Process/Tool Related category, the
majority of issues in our taxonomy [2] are not considered impor-
tant. The notable exception is represented by the lack of time to
write documentation. Four additional issues are frequently faced by
practitioners, including the lack of/poor automatization.

Software Documentation: The Practitioners’ Perspective ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

5 WHAT TYPES OF DOCUMENTATION ARE
USEFUL TO PRACTITIONERS?

Figure 3 presents in a heat map the percentage of practitioners
indicating documentation types (columns) as useful for given soft-
ware engineering tasks (rows). A dark spot represents an artifact
that was found to be particularly useful for a specific task (e.g.,
Code Comment for Software Debugging), while a white spot shows
that none of the participants considered the documentation artifact
useful for a given task (e.g., Code Comment for Database Design).

We grouped and sorted the software engineering tasks based
on the stage of the software lifecycle to which they relate the
most. This resulted in three groups of tasks: Requirements & Design,
Development & Testing, and Operation & Maintenance. We present
a heat map that combines the data about the different tasks in the
mentioned groups at the bottom of Figure 3.

The documentation types are sorted based on the average per-
centage of participants who considered the documentation type
useful for each of the 15 tasks.

Requirements Engineering

Soft. Structure and Architecture Design

User Interface Design

Database Design

Quality Attr. Analysis and Evaluation

Software Programming

Software Debugging

Code Refactoring

Program Comprehension

Reverse Eng. and Design Recovery

Software/Data Migration

Release Management

Legal Aspects (Copyright, License, etc.)

Software Testing/Quality Assurance

Learning a New Technology/Framework

Code Com
m

ent
Contribution Guideline
Com

m
unity Knowledge

User M
anual

Deploym
ent Guide

FAQ
M

igration Guide

How-To/Tutorial

Release Note/Change Log

Installation Guide

Video Tutorials

API Reference

0% ≤20% ≤40% ≤60% ≤80% > 80%
Percentage of practitioners indicating a documentation type

(column) as useful for a given software-related task (row)

Getting Started

Re
qu

ire
m

en
ts

 &

De
si

gn
De

ve
lo

pm
en

t &

Te
st

in
g

Op
er

at
io

ns
 &

M

ai
nt

en
an

ce

Requirements & Design

Development & Testing

Operations & Maintenance

Figure 3: Types of documentation perceived as useful by
practitioners in the context of specific software engineering
tasks (RQ2), according to the results of Survey-II.

In the following, we discuss interesting cases, while more de-
tailed results are available in the replication package [1].

Code Comment and Contribution Guideline were the two docu-
mentation types considered as more useful for the different tasks.
The distributions of answers are quite different and skewed towards
different tasks. Code Comment was found highly useful for only
a few Development & Testing tasks. In particular, all participants
agreed on the usefulness of Code Comments for Software Debug-
ging and 80% of them also pointed to their importance for Program
Comprehension. 40% of practitioners marked Code Refactoring as an
activity benefiting from code comments. Concerning other tasks,
excluding isolated exceptions, participants did not mark code com-
ments as useful.

When asked about why Code Comments are useful for the afore-
mentioned tasks, participants emphasized that comments communi-
cate information that is not evident in the code but could help other
developers, particularly those who join the project at later stages:
“Software is developed over a long period of time by many different de-
velopers; something that may seem obvious to one person may not be
obvious to the person who has to maintain the code” . Concerning the
useful information items from comments, participants who marked
them as useful for debugging highlighted the fundamental role of
parameters’ descriptions, e.g., “Comments might tell the meaning
of parameter if the variable name is not adequate” . Assumptions
made in the code should be also documented since they serve in
debugging. Practitioners mostly see comments as a way to gather
information about the code purpose and behavior.

® The different information items in code comments deemed
useful for two quite related tasks (i.e., code debugging and pro-
gram comprehension) confirms that the context is essential in doc-
umentation recommender systems aimed at automatically generate
documentation (e.g., comments) or at pointing to useful sources of
information [6, 56]. More in general, it highlights the importance
of keeping comments updated and consistent with the source code,
as also observed in our previous study [2].

�
Only a few approaches are available to detect code-
comment inconsistencies, but they are specialized to spe-
cific types of comments (e.g., Javadoc [65]).

Contribution Guideline was found helpful in development tasks
(64% of the participants found it practical for Software Testing/Qual-
ity Assurance, and 45% for Software Programming), but it is more
versatile than Code Comment and suitable for design tasks too:
45% of participants claimed its usefulness during Software Structure
and Architecture Design. They mentioned various benefits derived
from the usage of this documentation, e.g., consistent style and
use of common programming techniques, improved productivity
of new contributors, explanation of workflows, CI pipelines, and
releases processes. Interestingly, a sales manager wrote about the
importance of this documentation as a means to demonstrate to
the customer the quality of the developed products: “Specifically
I deal with pre-sales and eventually end user. This document would
validate our concerns and investments in the product [...], so it is very
important” . Looking at the useful information items from this doc-
ument, practitioners mostly mentioned best practices, coding style
guidelines, testing requirements, and pull request/release checklist.
The last two were considered as particularly important for Software
Testing/Quality Assurance.

�
Contribution Guideline is an often neglected document that
does not seem to have a negative effect when it is miss-
ing but, as shown by our survey, can positively influence
a wide range of tasks when it is well written. It is also
poorly considered in the researcher community; hence,
there are many open possibilities to help practitioners. An
interesting direction could be to (partially) generate such
a document by automatically recognizing development
practices, e.g., coding styles, testing practices, frequently
reviewed aspects in pull requests. Such a tool could benefit
from learning approaches (e.g., Allamanis et al. [3]).

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea E. Aghajani et al.

Another documentation type useful for many tasks is the User
Manual. It was found helpful for most of the tasks by at least one
fifth of the participants. Themost important information items from
this document are, according to the surveyed participants: Screen-
shots, Description of expected behavior, and Step-by-step technical
descriptions. However, also in this case, we observed differences in
the distribution of these items depending on the task. For exam-
ple, Screenshots and Description of expected behavior are useful for
Software Debugging (to check how the system should behave).

® Despite the apparent relevance of a User Manual in many
tasks, our taxonomy [2] has only one issue (Missing User Man-
ual) directly mentioning it, although other more general issues
in the taxonomy could apply to this type of document. Given the
recognized importance of User Manuals, researchers have started
working on approaches to automatically generate/update parts of
this document, e.g., screenshots. Representative examples are the
work by Waits and Yankel [70] and Souza and Oliveira [62].

There are several white spots in Figure 3, partially due to the low
number of responses we collected for Code Refactoring, Reverse En-
gineering and Design Recovery, Legal Aspects, and Quality Attributes
Analysis and Evaluation. Recall that participants could choose up to
three tasks for each assigned documentation type, so it is possible
that they did not select other tasks for which the given documenta-
tion might still be useful, but not as much as for the selected top-3.
On average, participants selected 2.6 tasks per documentation item,
so they indeed took the opportunity to select three tasks in some
cases. This could explain the limited number of feedback for some
tasks. It also explains why API Reference was found helpful in fewer
cases than one might expect. Instead of selecting Code Refactoring
or Code Comprehension development tasks, participants put their
priorities on other tasks for this type of documentation.

® For API Reference, most participants mentioned Overviews/-
Summaries of fields/methods and Code Examples as relevant, in line
with our previous findings [2], where we also found many issues
related to code examples, and stressed the importance of ensuring
the consistency of code examples and the actual code. It also sup-
ports the importance of research fields such as code summarization
[18, 19, 39, 40] and the automatic generation of code examples [45].

Finally, the perceived usefulness of How-To/Tutorials for different
tasks is noteworthy. This is expected when considering the increas-
ing availability of online tutorials about many different topics.

Summing up. The main message resulting from RQ2 is that prac-
titioners perceive different documentation types as useful for dif-
ferent tasks. Also, as shown in some of the discussed examples,
even within the same documentation type, different information
items might be useful for different tasks. This supports the need for
context-aware documentation recommender systems [6, 56].

6 THREATS TO VALIDITY
Construct validity. They are primarily related to the process we
used to select the types of documentation issue (Survey-I) and the
list of documentation types and tasks (Survey-II) for our surveys.
These selections may not be representative of all possible docu-
mentation issues/types and software-related tasks. To mitigate this
threat we always included a free-form “Other” option in the set of
answers where these lists were used.

Internal validity. One factor is the response rate: while it does
not look very high (9.5%), it is in line with the suggested minimum
response rate for survey studies, i.e., 10% [17].

Another possible threat concerns the fact that 146 respondents
decided to participate to the survey because they had greater inter-
est in documentation than others, thus providing a “biased view”
of the investigated phenomena. However, our population consists
of practitioners that have different roles and, as shown by the re-
sults, quite different views on the documentation issues and on the
usefulness of different types of documentation for specific tasks.

Finally, a typical co-factor in survey studies is the respondent
fatigue bias. We mitigated this threat by running a pilot study with
four professional developers and four PhD students, to make sure
that both surveys could be answered within 15 minutes.

External validity. The obvious threats here are (i) the context
of our study, limited to participants mostly from a single multi-
national company, and (ii) the total number of participants (i.e.,
146). Concerning the first point, while developers from different
companies/domains could have different views of the studied phe-
nomena, we collected answers from 20 different countries across 4
continents (complete data in our replication package [1]). As for the
number of participants, it is higher or in line with many previously
published survey studies [10, 11, 14, 15, 25, 49, 54, 61].

7 CONCLUSION
We presented two surveys conducted with a total of 146 practition-
ers and aimed at investigating: documentation issues they perceive
as important, and possible solutions they adopt when facing these
issues (Survey-I); and documentation types they perceive as useful
during specific software engineering tasks (Survey-II).

For Survey-I, we started from our previous taxonomy [2]. Said
taxonomy had not been validated with practitioners, and indeed
our first study showed that only a small subset of the 162 documen-
tation issues reported in our taxonomy are deemed important by
practitioners. Based on the survey responses, we provide a set of
suggestions (�) for future research endeavours, some of which are
surprisingly low hanging fruits. In essence, it does not take much
to ameliorate the state of affairs around documentation, and we
believe that our now validated taxonomy represents a good starting
point.

As for Survey-II, our results show when practitioners deem cer-
tain documentation types more important for specific tasks at hand.
As the research community is headed towards the development of
automated documentation generation recommenders [6, 56], we
believe that our second study provides precious knowledge for the
road ahead.

ACKNOWLEDGMENTS
Lanza and Aghajani gratefully acknowledge the financial support of
the Swiss National Science Foundation for the project PROBE (SNF
Project No. 172799). Bavota acknowledges the financial support
of the Swiss National Science Foundation for the project CCQR
(SNF Project No. 175513). Aghajani also thanks CHOOSE (https:
//choose.swissinformatics.org) for the kind sponsorship.

Software Documentation: The Practitioners’ Perspective ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C. Shepherd. 2020. Replication Package. https:
//github.com/USI-INF-Software/Conf-ReplicationPackage-ICSE2020

[2] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documen-
tation Issues Unveiled. In Proceedings of the 41st International Conference on
Software Engineering (ICSE). IEEE Press, 1199–1210.

[3] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-
ing Natural Coding Conventions. In Proceedings of the 22Nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (FSE’14). ACM,
281–293. https://doi.org/10.1145/2635868.2635883

[4] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Et-
tore Merlo. 2002. Recovering traceability links between code and documentation.
IEEE Trans. on Soft. Eng. 28, 10 (2002), 970–983.

[5] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What Are
Developers Talking About? An Analysis of Topics and Trends in Stack Overflow.
Empirical Softw. Eng. 19, 3 (2014), 619–654. https://doi.org/10.1007/s10664-012-
9231-y

[6] Gabriele Bavota. 2016. Mining Unstructured Data in Software Repositories:
Current and Future Trends. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 5. IEEE, 1–12.

[7] Pierre Bourque and Richard E. Fairley. 2014. Guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): Version 3.0 (3rd ed.). IEEE Computer Society
Press.

[8] Jie Cherng Chen and Sun Jen Huang. 2009. An empirical analysis of the impact
of software development problem factors on software maintainability. Journal of
Systems and Software 82, 6 (2009), 981–992. https://doi.org/10.1016/j.jss.2008.12.
036

[9] Luis Fernando Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On Automatically Generating Commit Messages via Summa-
rization of Source Code Changes. In Proc. of the IEEE 14th Int. Working Conf. on
Source Code Analysis and Manipulation. IEEE, 275–284. https://doi.org/10.1109/
SCAM.2014.14

[10] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and Evolving
Developer Documentation: Understanding the Decisions of Open Source Con-
tributors. In Proc. of the 18th ACM SIGSOFT Int. Symp. on Foundations of Software
Engineering (FSE 2010). ACM, 127–136. https://doi.org/10.1145/1882291.1882312

[11] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira. 2005.
A Study of the Documentation Essential to Software Maintenance. In Proceed-
ings of the 23rd Annual International Conference on Design of Communication:
Documenting & Designing for Pervasive Information (SIGDOC ’05). ACM, 68–75.
https://doi.org/10.1145/1085313.1085331

[12] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki, Cor-
rado A. Visaggio, Gerardo Canfora, and Harald C. Gall. 2016. What Would Users
Change in My App? Summarizing App Reviews for Recommending Software
Changes. In Proc. of the 24th ACM SIGSOFT Int. Symp. on Foundations of Software
Engineering (FSE 2016). ACM, 499–510. https://doi.org/10.1145/2950290.2950299

[13] Association for Computing Machinery (ACM). 2012. The 2012 ACM Computing
Classification System. https://www.acm.org/publications/class-2012

[14] Andrew Forward and Timothy C. Lethbridge. 2002. The Relevance of Software
Documentation, Tools and Technologies: A Survey. In Proc. of the 2002 ACM
Symp. on Doc. Eng. (DocEng). ACM, 26–33. https://doi.org/10.1145/585058.585065

[15] Golara Garousi, Vahid Garousi, Mahmoud Moussavi, Guenther Ruhe, and Brian
Smith. 2013. Evaluating usage and quality of technical software documenta-
tion: an empirical study. In Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering. ACM, 24–35.

[16] Golara Garousi, Vahid Garousi-Yusifoglu, Guenther Ruhe, Junji Zhi, Mahmoud
Moussavi, and Brian Smith. 2015. Usage and usefulness of technical software
documentation: An industrial case study. Information and Software Technology
57, 1 (2015), 664–682. https://doi.org/10.1016/j.infsof.2014.08.003

[17] Robert M. Groves, Floyd J. Fowler Jr., Mick P. Couper, James M. Lepkowski,
Eleanor Singer, and Roger Tourangeau. 2009. Survey Methodology, 2nd edition.
Wiley.

[18] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting Program
Comprehension with Source Code Summarization. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 2 (ICSE’10).
ACM, 223–226. https://doi.org/10.1145/1810295.1810335

[19] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
Use of Automated Text Summarization Techniques for Summarizing Source Code.
In Proceedings of the 17th Working Conf. on Rev. Eng. IEEE Comp. Soc., 35–44.
https://doi.org/10.1109/WCRE.2010.13

[20] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni
Stroulia. 2012. Understanding Android Fragmentation with Topic Analysis of
Vendor-Specific Bugs. In 2012 19th Working Conference on Reverse Engineering.
IEEE Comp. Soc., 83–92.

[21] Reid Holmes and Gail C. Murphy. 2005. Using Structural Context to Recommend
Source Code Examples. In Proc. of the 27th Int. Conf. on Software Engineering
(ICSE 2005). ACM, 117–125. https://doi.org/10.1145/1062455.1062491

[22] Reid Holmes, Robert J. Walker, and Gail C. Murphy. 2006. Approximate Struc-
tural Context Matching: An Approach to Recommend Relevant Examples. IEEE
Transactions on Software Engineering 32 (12 2006), 952–970. https://doi.org/10.
1109/TSE.2006.117

[23] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep Code Comment
Generation. In Proceedings of the 26th Conference on Program Comprehension
(Gothenburg, Sweden). ACM, 200–210. https://doi.org/10.1145/3196321.3196334

[24] Siyuan Jiang and Collin McMillan. 2017. Towards Automatic Generation of Short
Summaries of Commits. In Proc. of the 25th IEEE/ACM Int. Conf. on Program
Comprehension (ICPC 2017). IEEE Press, 320–323. https://doi.org/10.1109/ICPC.
2017.12

[25] Mira Kajko-Mattsson. 2005. A Survey of Documentation Practice within
Corrective Maintenance. Empirical Software Engineering 10, 1 (2005), 31–55.
https://doi.org/10.1023/B:LIDA.0000048322.42751.ca

[26] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E. Hassan.
2015. What Do Mobile App Users Complain About? IEEE Software 32, 3 (2015),
70–77. https://doi.org/10.1109/MS.2014.50

[27] Elena Korshunova, Marija Petkovic, MGJ Van Den Brand, and Mohammad Reza
Mousavi. 2006. CPP2XMI: Reverse Engineering of UML Class, Sequence, and
Activity Diagrams from C++ Source Code. In 2006 13th Working Conference on
Reverse Engineering. IEEE Comp. Soc., 297–298.

[28] Rrezarta Krasniqi, Siyuan Jiang, and Collin McMillan. 2017. TraceLab Compo-
nents for Generating Extractive Summaries of User Stories. In 2017 IEEE Int. Conf.
on Soft. Maint. and Evolution (ICSME). IEEE, 658–658. https://doi.org/10.1109/
ICSME.2017.86

[29] Boyang Li, Christopher Vendome,Mario Linares-Vásquez, andDenys Poshyvanyk.
2018. Aiding Comprehension of Unit Test Cases and Test Suites with Stereotype-
based Tagging. In Proceedings of the 26th Conference on Program Comprehension
(ICPC’18). ACM, 52–63. https://doi.org/10.1145/3196321.3196339

[30] Boyang Li, Christopher Vendome, Mario Linares-Vásquez, Denys Poshyvanyk,
and Nicholas A. Kraft. 2016. Automatically Documenting Unit Test Cases. In
Proc. of the IEEE Int. Conf. on Software Testing, Verification and Validation (ICST
2016). IEEE, 341–352. https://doi.org/10.1109/ICST.2016.30

[31] Jing Li, Aixin Sun, and Zhenchang Xing. 2018. Learning to answer program-
ming questions with software documentation through social context embedding.
Information Sciences 448 (2018), 36–52.

[32] Mario Linares-Vásquez, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. ChangeScribe: A Tool for Automatically Generating Commit
Messages. In 2015 IEEE/ACM 37th IEEE Int. Conf. on Software Engineering, Vol. 2.
IEEE, 709–712. https://doi.org/10.1109/ICSE.2015.229

[33] Mario Linares-Vásquez, Bogdan Dit, and Denys Poshyvanyk. 2013. An ex-
ploratory analysis of mobile development issues using Stack Overflow. In Proc.
of the 10th Working Conf. on Mining Software Repositories (MSR). IEEE, 93–96.
https://doi.org/10.1109/MSR.2013.6624014

[34] Mario Linares-Vásquez, Boyang Li, Christopher Vendome, andDenys Poshyvanyk.
2016. Documenting Database Usages and Schema Constraints in Database-centric
Applications. In Proc. of the 25th Int. Symp. on Software Testing and Analysis (ISSTA
2016). ACM, 270–281. https://doi.org/10.1145/2931037.2931072

[35] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continu-
ous, Evolutionary and Large-Scale: A New Perspective for Automated Mobile
App Testing. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 399–410. https://doi.org/10.1109/ICSME.2017.27

[36] Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki. 2012. Modelling the
‘Hurried’ bug report reading process to summarize bug reports. In Proceedings
of the 28th IEEE Int. Conf. on Soft. Maintenance (ICSM). IEEE, 430–439. https:
//doi.org/10.1109/ICSM.2012.6405303

[37] Senthil Mani, Rose Catherine, Vibha Singhal Sinha, and Avinava Dubey. 2012.
AUSUM: Approach for Unsupervised Bug Report Summarization. In Proceedings
of the ACM SIGSOFT 20th Int. Symp. on the Foundations of Software Engineering
(FSE’12). ACM, 11:1–11:11. https://doi.org/10.1145/2393596.2393607

[38] Paul W. McBurney, Cheng Liu, Collin McMillan, and Tim Weninger. 2014. Im-
proving Topic Model Source Code Summarization. In Proc. of the 22nd Int. Conf.
on Program Comprehension (ICPC 2014). ACM, 291–294. https://doi.org/10.1145/
2597008.2597793

[39] Paul W. McBurney and Collin McMillan. 2014. Automatic Documentation
Generation via Source Code Summarization of Method Context. In Proc. of
the 22nd Int. Conf. on Program Comprehension (ICPC 2014). ACM, 279–290.
https://doi.org/10.1145/2597008.2597149

[40] Paul W. McBurney and Collin McMillan. 2016. Automatic Source Code Summa-
rization of Context for Java Methods. IEEE Transactions on Software Engineering
42, 2 (Feb 2016), 103–119. https://doi.org/10.1109/TSE.2015.2465386

[41] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: Finding Relevant Functions and Their Usage. In Proc. of the
33rd Int. Conf. on Soft. Eng. (ICSE 2011). ACM, 111–120. https://doi.org/10.1145/
1985793.1985809

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea E. Aghajani et al.

[42] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Françoise
Le Meur. 2010. DECOR: A Method for the Specification and Detection of Code
and Design Smells. IEEE Trans. Software Eng. 36, 1 (2010), 20–36.

[43] Kjetil Molkken and Magne Jrgensen. 2003. A Review of Surveys on Software
Effort Estimation. In Proceedings of the 2003 International Symposium on Empirical
Software Engineering. IEEE Comp. Soc., 223–230.

[44] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and Vijay Shanker. 2013. Automatic Generation of Natural Language Summaries
for Java Classes. In 21st IEEE Int. Conf. on Program Comprehension (ICPC’13). IEEE,
23–32.

[45] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
AndrianMarcus. 2015. HowCan I Use ThisMethod?. In Proc. of the 37th IEEE/ACM
Int. Conf. on Software Engineering (ICSE 2015). IEEE Press, 880–890.

[46] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2014. Automatic Generation of Release Notes. In
Proc. of the 22nd ACM SIGSOFT Int. Symp. on Foundations of Software Engineering
(FSE 2014). ACM, 484–495. https://doi.org/10.1145/2635868.2635870

[47] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2017. ARENA: An Approach for the Automated
Generation of Release Notes. IEEE Transactions on Software Engineering 43, 2
(2017), 106–127. https://doi.org/10.1109/TSE.2016.2591536

[48] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C. Gall. 2016. The Impact of Test Case Summaries on Bug Fixing Per-
formance: An Empirical Investigation. In Proc. of the 38th Int. Conf. on Software
Engineering (ICSE 2016). ACM, 547–558. https://doi.org/10.1145/2884781.2884847

[49] Reinhold Plösch, Andreas Dautovic, and Matthias Saft. 2014. The Value of
Software Documentation Quality. In Proc. of the 14th Int. Conf. on Quality Software.
IEEE, 333–342. https://doi.org/10.1109/QSIC.2014.22

[50] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-confident
Programming Prompter. In Proc. of the 11th Working Conf. on Mining Software
Repositories (MSR 2014). ACM, 102–111. https://doi.org/10.1145/2597073.2597077

[51] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea Mocci, Rocco
Oliveto, Massimiliano Di Penta, and Michele Lanza. 2017. Supporting Soft-
ware Developers with a Holistic Recommender System. In Proc. of the 39th
IEEE/ACM Int. Conf. on Software Engineering (ICSE). IEEE Press, 94–105. https:
//doi.org/10.1109/ICSE.2017.17

[52] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2014. Automatic Summa-
rization of Bug Reports. IEEE Transactions on Software Engineering 40, 4 (2014),
366–380.

[53] Steven P. Reiss. 2009. Semantics-based Code Search. In Proc. of the 31st Int. Conf. on
Soft. Eng. (ICSE 2009). IEEE, 243–253. https://doi.org/10.1109/ICSE.2009.5070525

[54] Martin P. Robillard. 2009. What makes APIs hard to learn? Answers from devel-
opers. IEEE Software 26, 6 (2009), 27–34. https://doi.org/10.1109/MS.2009.193

[55] Martin P. Robillard and Robert Deline. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16, 6 (2011), 703–732. https://doi.org/
10.1007/s10664-010-9150-8

[56] Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd, and
Edmund Wong. 2017. On-demand Developer Documentation. In Proc. of the 33rd
IEEE Int. Conf. on Software Maintenance and Evolution (ICSME). IEEE, 479–483.
https://doi.org/10.1109/ICSME.2017.17

[57] Paige Rodeghero, Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. De-
tecting User Story Information in Developer-Client Conversations to Generate
Extractive Summaries. In 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering (ICSE). IEEE, 49–59.

[58] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sid-
ney D’Mello. 2014. Improving Automated Source Code Summarization via an
Eye-tracking Study of Programmers. In Proc. of the 36th Int. Conf. on Software
Engineering (ICSE 2014). ACM, 390–401. https://doi.org/10.1145/2568225.2568247

[59] Christoffer Rosen and Emad Shihab. 2016. What Are Mobile Developers Asking
About? A Large Scale Study Using Stack Overflow. Empirical Softw. Eng. 21, 3
(2016), 1192–1223. https://doi.org/10.1007/s10664-015-9379-3

[60] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A Qualitative Ap-
proach. Sci. Comput. Program. 74, 7 (May 2009), 470–495.

[61] S. M. Sohan, Frank Maurer, Craig Anslow, and Martin P. Robillard. 2017. A study
of the effectiveness of usage examples in REST API documentation. Proc. of
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
2017-October (2017), 53–61. https://doi.org/10.1109/VLHCC.2017.8103450

[62] Rodrigo Souza and Allan Oliveira. 2017. GuideAutomator: Continuous Delivery of
End User Documentation. In 39th IEEE/ACM International Conference on Software
Engineering: New Ideas and Emerging Technologies Results Track, ICSE-NIER. IEEE,
31–34. https://doi.org/10.1109/ICSE-NIER.2017.10

[63] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-
Shanker. 2010. Towards Automatically Generating Summary Comments for Java
Methods. In Proc. of the IEEE/ACM Int. Conf. on Automated Software Engineering.

ACM, 43–52.
[64] Jeffrey Stylos and Brad A. Myers. 2006. Mica: A Web-Search Tool for Finding API

Components and Examples. In Proc. of the Visual Languages and Human-Centric
Computing (VLHCC 2006). IEEE, 195–202. https://doi.org/10.1109/VLHCC.2006.32

[65] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @tComment:
Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In 2012
IEEE Fifth International Conference on Software Testing, Verification and Validation.
IEEE, 260–269.

[66] Suresh Thummalapenta and Tao Xie. 2007. Parseweb: A Programmer Assistant
for Reusing Open Source Code on the Web. In Proc. of the 22nd IEEE/ACM Int.
Conf. on Automated Soft. Eng. (ASE). ACM, 204–213. https://doi.org/10.1145/
1321631.1321663

[67] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017), e1838. https://doi.org/10.1002/smr.1838

[68] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2017. When and Why Your
Code Starts to Smell Bad (andWhether the Smells Go Away). IEEE Trans. Software
Eng. 43, 11 (2017), 1063–1088.

[69] Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE
Software 32, 4 (2015), 68–75. https://doi.org/10.1109/MS.2014.80

[70] ToddWaits and Joseph Yankel. 2014. Continuous system and user documentation
integration. In 2014 IEEE International Professional Communication Conference
(IPCC). IEEE, 1–5. https://doi.org/10.1109/IPCC.2014.7020385

[71] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-
scale empirical study on code-comment inconsistencies. In Proceedings of the
27th International Conference on Program Comprehension, ICPC 2019. IEEE Press,
53–64.

[72] Annie T. T. Ying and Martin P. Robillard. 2013. Code Fragment Summarization.
In Proceedings of the 9th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE’13). ACM, 655–658. https://doi.org/10.1145/2491411.2494587

[73] Junji Zhi, Vahid Garousi-Yusifoglu, Bo Sun, Golara Garousi, Shawn Shahnewaz,
and Guenther Ruhe. 2015. Cost, benefits and quality of software development
documentation: A systematic mapping. Journal of Systems and Software 99 (2015),
175–198. https://doi.org/10.1016/j.jss.2014.09.042

