
Context-Aware Software Documentation
Emad Aghajani

Software Institute, REVEAL
Università della Svizzera italiana (USI), Lugano, Switzerland

emad.aghajani@usi.ch

Abstract—Software developers often do not possess the knowl-
edge needed to understand a piece of code at hand, and the
lack of code comments and outdated documentation exacerbates
the problem. Asking for the help of colleagues, browsing the
official documentation, or accessing online resources, such as
Stack Overflow, can clearly help in this “code comprehension”
activity that, however, still remains highly time-consuming and
is not always successful.

Enhancing this process has been addressed in different studies
under the subject of automatic documentation of software arti-
facts. For example, “recommender systems” have been designed
with the goal of retrieving and suggesting relevant pieces of
information (e.g., Stack Overflow discussions) for a given piece
of code inspected in an IDE. However, these techniques rely on
limited contextual information, mainly solely source code.

Our goal is to build a context-aware proactive recommender
system supporting the code comprehension process. The system
must be able to understand the context, consider the developer’s
profile, and help her by generating pieces of documentation at
whatever granularity is required, e.g., going from summarizing
the responsibilities implemented in a subsystem, to explaining
how two classes collaborate to implement a functionality, down
to documenting a single line of code. Generated documentation
will be tailored for the current context (e.g., the task at hand, the
developer’s background knowledge, the history of interactions).
In this paper we present our first steps toward our goal by
introducing the ADANA project, a framework which generates
fine-grained code comments for a given piece of code.

Index Terms—software documentation, program comprehen-
sion, context-aware, recommender system

I. RESEARCH STATEMENT

Software systems are often developed by several teams of
developers responsible for developing and maintaining different
subsystems. Thus, it is not unusual for developers to deal with
unfamiliar code they have difficulties in comprehending. This
is especially true when the code lacks documentation and
comments [?], thus hindering the code comprehension activity.
Even when comments are there, there is no guarantee that they
are aligned with the implemented code, since the asynchronous
evolution between code and comments has been empirically
demonstrated in previous studies [?], [?], [?].

To make up for the lacking knowledge, developers browse
through official/unofficial sources of documentation or ask
colleagues [?]. This process, called code comprehension, is
time-consuming and can account for up to 70% of the time
spent by developers in their daily activities [?]. Fostering this
process has been the goal of several researchers who developed
a number of approaches for the automatic documentation of
software artifacts. Many of these approaches are in the form of
recommender systems, that analyze the code in the Integrated

Development Environment (IDE) and try to recommend useful
pieces of documentation for the specific task at hand.

Although these techniques have demonstrated their ability
in fostering the code comprehension process, they still exhibit
a number of major limitations. Indeed, when giving recom-
mendations, they tend to ignore the level of expertise of the
developer and the specific task at hand (e.g., does the developer
need to comprehend the code in the context of a bug-fixing
activity or of the implementation of a new feature?). Also,
most of them work at a fixed granularity level, not allowing
to document a single line of code of interest (i.e., to explain
what it is implemented by that line) or a whole subsystem.

Our goal is to build a context-aware proactive recommender
system which is able to automatically document a given system
at different levels of granularity. Our ideal recommender system
will be able to (1) understand when a developer is looking
for missing information, and (2) provide dynamic information
considering the context (e.g., the task at hand, the developer’s
background knowledge).

We believe the use of contextual information could enhance
the “usefulness” of existing approaches, and result in increased
developers’ productivity.

II. STATE OF THE ART

The code comprehension process has been extensively
studied by researchers, also with the aim of devising strategies
to improve it. Some of these strategies are described in the
following.
Summarization. Code summarization techniques have been

used in the context of automatic software documenta-
tion. The conjecture is that concise natural language
descriptions of source code fragments enhance the code
comprehension process by reducing the amount of code
to be read by the developer and, as a result, the time
required to understand the code.
Summarization can be done in two ways: extractive or
abstractive [?]. Extractive summaries [?], [?] are obtained
by selecting a subset of document elements (e.g., a
subset of code statements) which represents the most
important information in the code. Note that this is
not really a piece of documentation that can help in
comprehending a complex piece of code, but rather a way
to save time to developers by removing “semantically-
irrelevant” statements. Abstractive approaches [?], [?], on
the other hand, take the semantics of the text and applies
natural-language processing techniques to generate a



summary. In addition, these techniques produce summaries
with different levels of granularity and are designed to
summarize different types of documents: methods [?], [?],
[?], [?], method usages [?], [?], classes [?], [?], [?], cross-
cutting concerns in code [?], or other software artifacts
[?], [?], [?], [?], [?], [?], [?].
State-of-the-art code summarization techniques mostly rely
on information retrieval (IR) techniques such as PageRank
[?], [?], LexRank [?], or Maximal Marginal Relevance
(MMR) [?]. However, some summarization approaches
leverage new techniques, for instance HoliRank [?], [?],
an extension of PageRank [?] devised to analyze data
in a holistic fashion. Some other approaches rely on
techniques such as neural networks [?], topic modeling
[?] and method/class stereotypes [?], [?], [?].
Although summarization is one of the common techniques
that can be adapted to document different types of software
artifacts, it falls short if the information to comprehend
the code is simply not inside the original document. In
these situations, one needs to seek the information using
external sources. This leads us to the mining of crowd
knowledge.

Mining Crowd knowledge. Researchers proposed several ap-
proaches which mine and process crowd knowledge
(semi-)automatically, and distill the most relevant parts.
The term “crowd knowledge” refers to any type of infor-
mation produced by the crowd, in our scope, developers.
Prominent examples of such type of knowledge are
Stack Overflow discussions, where a developer can find
numerous source code associated with natural language
descriptions. Relying on this fact, researchers have pro-
posed different techniques to leverage this information,
mostly by suggesting a discussion relevant to the source
code at hand [?], [?], [?], [?], [?], [?].
Wong et al. [?] proposed an approach, called CloCom,
which mines a set of given projects (inputs) to generate
code comments for a target project. The idea is to reuse
existing code comments from input projects in order to
generate comments for a target project. The results show
that 23.7% of the automatically generated code comments
are useful at describing the source code, which suggests
an improvement on the earlier approach by the same
authors, AutoComment [?], in terms of number of useful
comments generated for the same set of target projects in
both research.

The mentioned automatic documentation approaches vary
mostly on the way information is retrieved, processed and
finally presented to developers. The source code a developer is
working on is the dominant input for most of them, regardless
of other parameters that vary from person to person or task to
task, and can be taken into account for more relevant and
useful results. Binkley et al. [?] stress the importance of
“useful” documentation, besides mere “good” documentation,
and emphasize the necessity of exploiting non-code factors,
such as the expertise level of the developer who the information

is being given to. Moreover, Happel et al. [?] conducted
a survey on some well-known recommender systems and
discussed their limitations and extant challenges, indicating that
obtaining useful documentation is not a straightforward task
and there are several challenges to be addressed. In a recent
discussion on the future of software artifact documentation
[?], Robillard et al. conducted a review of state-of-the-art
approaches and outlined the key challenges in three categories:
information inference (i.e., mechanisms to model and infer
information), document request (i.e., mechanisms to enable
developers to express their information needs in a better
way) and document generation (i.e., approaches to generate
appropriate output) [?].

In this research, we want to address some of mentioned
issues, most importantly, the lack of context-awareness and
fixed granularity level of documentation. Our objective is to
devise a context-aware recommender system which is able to
document a given system at whatever granularity is required.

III. CURRENT STATE OF RESEARCH

We thus far focused on (1) studying documentation issues,
and (2) implementing a fast prototype of our envisioned recom-
mender system for the automatic generation of documentation.

A. Documentation Issues

We investigated documentation issues and their effects on
developers. In this context, Arnaoudova et al. [?] presents
a catalog of 17 Linguistic Antipatterns (LAs), representing
inconsistencies among the implementation, naming and docu-
mentation of source code entities such as methods.

We conducted a large-scale empirical study [?] on 1.6k
releases of popular Maven libraries and 14k open-source Java
projects using these libraries, to understand the impact of using
APIs affected by LAs on these projects as compared to using
clean APIs. Our in-depth quantitive and qualitative analyses
suggested conflicting evidence. We plan to further investigate
LAs issues, as well as other kinds of issues that software
developers deal with when using documentation.

B. Documentation Generation

We proceeded toward our vision with the ADANA project,
a framework which generates fine-grained code comments for
a given piece of code by reusing similar well-documented code
snippets. The framework consists of an Android studio plug-
in, a set of backend services for analyzing and extracting
data from online repositories, and a knowledge base for
storing snippets and descriptions. The knowledge base stores
64K pairs of 〈code, description〉 from GitHub Gist, Stack
Overflow discussions and Stack Overflow Documentation. We
also devised ASIA (Android SImilarity Assessment), a clone
detection approach tailored for Android. Given a code snippet to
be documented, ADANA tries to find potential clones of it in the
knowledge base and reuse the associated description. Listing
1 reports an example of comment automatically generated
by ADANA. Although ADANA correctly documents the
code behavior (“Shows a Clear button after the first character



1

2

Fig. 1: ADANA Android Studio plug-in GUI

pressed”), it also generates an imprecise comment describing a
behavior not implemented in the code snippet (“hides it when
the text is empty”). We plan to address this limitation in our
future work.
public void onTextChanged(CharSequence s, int

start, int before, int count){
// Shows a Clear button after the first

character pressed and hides it when the
text is empty

if(s.length() > 0){
clear_button.setVisibility(View.VISIBLE);
searchText = s.toString();

}
}

Listing 1: Example of an injected comment

Figure 1 depicts the ADANA Android Studio plug-in. The
developer first selects a code fragment she is interested in
comprehending and invokes the ADANA plug-in. ADANA
shows a granularity slider 1 to set the granularity of the
comments one is interested in retrieving: If the slider is to the
left, ADANA looks for clones of the whole code selection and,
in case of successful retrieval, only injects a single comment
describing the selected code. Moving the slider to the right,
ADANA decomposes the selected code on the basis of the
indentation level, as identified by parsing the AST representing
the selection. Each of the parts ADANA tries to document
is shown in a different color. The maximum value of the
granularity slider depends on the maximum indentation level
of the selected code. Once the developer picks the granularity,
she clicks on the “Retrieve Code Description” button close
to the slider, obtaining the descriptions (highlighted in green)
retrieved by ADANA for each of the highlighted code portions.
By using the code markers added by ADANA 2 , she can

either accept it as is, modify and accept it, or reject it. If she
accepts (before/after changing it), both code snippet and the
associated comment are added to the ADANA knowledge base.

We have evaluated both ADANA and ASIA comprehen-
sively in three studies. The results showed that ADANA is able
to detect clones for Android code snippets with a precision of
77,76%, relying on ASIA. Moreover, ADANA can boost the
program comprehension process by generating comments which
were mostly considered as “useful” by the study participants.

In comparison with similar approaches, e.g., CloCom by
Wong et al. [?], ADANA provides a first basic implementation
of the ideal recommender system we would like to develop
in the long-term run, e.g., enabling developers to decide upon
the granularity level of injected comments. Moreover, the
ADANA knowledge base becomes richer as new questions and
Gists emerge, whereas the performance of CloCom is highly
dependent on the projects which are specified as the input.

However, ADANA has some limitations. For example, it
relies on limited contextual information (only the code in the
IDE), can only be invoked on-demand (i.e., it is not proactive),
and can not document coarse-grained components (e.g., a whole
subsystem). We plan to address these limitations as part of our
future work (see Section IV).

IV. CONCLUSION AND FUTURE RESEARCH PLAN

Our idea is to define and experiment techniques serving as
the basis for a novel generation of recommender systems acting
as an intelligent personal assistant during code-related activities
(e.g., fixing a bug, implementing a new feature, etc.). To that
end, we are investigating documentation issues experienced by
software developers. Moreover, we are working on a number
of key features in ADANA, including:



1) Context-aware. Currently, recommender systems sup-
porting developers during code-related activities exploit
the code in the IDE as the main source of information
to capture the context and, then, recommend useful
pieces of information for it (e.g., related Stack Overflow
discussions). However, the working context is much more
than a bunch of lines of code shown in the IDE. For
example, two developers having diverse expertise level
should receive different types of documentation even when
working on the same task on the same code component.
Ignoring the developers’ profile might result in generating
documentation that is either “too trivial” or “too complex”,
thus useless in both cases. We plan to capture the context
in which documentation will be generated by considering:
• Developer’s profile. Information such as the code frag-

ments developed in the past, the developer’s expertise
on the different technologies used in the project, and the
history of successful and unsuccessful tasks performed
in the past form a developer’s profile. For example, a
bug fixed by a developer and not “reopened” in the
future can be considered a successful task performed
by the developer, while a fixed bug that has been then
reopened and fixed again, can represent an instance
of an unsuccessful task. Knowing this can help in
assessing the experience level of the developer on
a particular subsystem (i.e., the one involved in the
bug-fixing activity) and, thus, to tailor the generated
documentation to the specific developer’s profile.

• Task at hand. Considering the developer’s task at
hand can provide hints useful to narrow down the type
of information she needs. For example, during a bug-
fixing activity it is important to understand and thus, to
automatically document, the production code as well
as the test code. The idea of utilizing the current task
information to assist developers has been adopted and
shown to be effective [?], [?] and has been implemented
in Mylyn1, a plug-in for the Eclipse IDE. However,
this information must be explicitly indicated by the
developer, and it is not automatically inferred by the
tool. We plan to exploit data from the issue tracking
system to infer the tasks the developer is working on.

2) Heterogeneous sources of information. As previously
discussed, the automatic documentation of source code can
be achieved in different ways (e.g., extractive vs abstractive
summaries). What clearly makes a difference in the ability
to document a given code are the basic information sources
exploited. We plan to exploit not only the official project’s
documentation, but also the project’s repositories (e.g.,
history of changes, information extracted from the issue
tracker, etc.), as well as the information that can be mined
from the Web such as documentation written by other
developers for code similar to the one to be automatically
documented.

3) Proactive and On-Demand. While we want the devel-

1http://www.eclipse.org/mylyn/

oper to be able to interact with our system on-demand (i.e.,
by asking explicit questions), we also want to provide
proactive recommendations in case, for example, we can
infer that the developer is struggling to understand a code
snippet. This can be done by monitoring her behavior
in the IDE and observing patterns likely indicating
understandability issues (e.g., scrolling up and down
several times over a specific method). In this cases, the
tool could automatically document the code with hints on
what the different lines of code implement.

4) Self-improving. We want to explore the usage of feedback
mechanisms to allow our techniques to self-improve
over time. For example, once a piece of documentation
is automatically generated for a given code snippet,
the developer can provide feedback indicating whether
it was useful or not to comprehend the code. This
feedback can be then exploited to infer good and bad
“commenting patterns”, possibly customized upon the
developer’s preferences.

5) Information granularity and presentation. The recom-
mender system must be able to present information at
different granularity levels. For instance, facing a class
to comprehend, one developer might be interested only
in a high-level description, while others might expect
instantiation examples. Thus the system must be able
to generate documentation at different granularity levels
and provide the developer with a “show me more/less
details” mechanism. Also, the way the documentation is
presented to the developer is important. In particular, we
will investigate different presentation techniques to select
the most appropriate one based on the amount and type
of data to present.

Moreover, we aim to extensively study the evolution of
documentation over time, investigating the issues, common
practices, and trends in this area.

Currently, I am few months far from starting the 3rd year of
a PhD under the supervision of Prof. Michele Lanza and Prof.
Gabriele Bavota. I intend to continue my research on automatic
software documentation by (1) working on a context-aware
recommender system, and (2) studying the nature of software
documentation per se, with a specific focus on documentation
issues experienced by software developers.

ACKNOWLEDGEMENTS

I gratefully acknowledge the financial support of the Swiss
National Science Foundation for the PROBE project (SNF
Project No. 172799), and CHOOSE for sponsoring my trip to
the conference.


