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Abstract—Almost every Mining Software Repositories (MSR)
study requires, as first step, the selection of the subject software
repositories. These repositories are usually collected from hosting
services like GitHub using specific selection criteria dictated by
the study goal. For example, a study related to licensing might
be interested in selecting projects explicitly declaring a license.
Once the selection criteria have been defined, utilities such as
the GitHub APIs can be used to “query” the hosting service.
However, researchers have to deal with usage limitations imposed
by these APIs and a lack of required information. For example,
the GitHub search APIs allow 30 requests per minute and, when
searching repositories, only provide limited information (e.g., the
number of commits in a repository is not included). To support
researchers in sampling projects from GitHub, we present GHS
(GitHub Search), a dataset containing 25 characteristics (e.g.,
number of commits, license, etc.) of 735,669 repositories written
in 10 programming languages. The set of characteristics has been
derived by looking for frequently used project selection criteria
in MSR studies and the dataset is continuously updated to (i)
always provide fresh data about the existing projects, and (ii)
increase the number of indexed projects. The GHS dataset can
be queried through a web application we built that allows to set
many combinations of selection criteria needed for a study and
download the information of matching repositories:
https://seart-ghs.si.usi.ch.

Index Terms—GitHub, search, sampling repositories

I. INTRODUCTION

The amount of data available in software repositories is
growing faster than ever. At the time of writing, GitHub [1]
hosts over 80 Million public repositories1 accounting for over
1 billion commit activities. Such an unprecedented amount of
software data represents the main ingredient of many Mining
Software Repositories (MSR) studies.

One of the fist steps in MSR studies consists in selecting
the subject projects, i.e., the software repositories to analyze in
order to answer the research questions (RQs) of interest. Such
a step is crucial to achieve generalizability of the findings and
ensure that the selected projects result in useful data points for
the goal of the study. For example, a study investigating the
types of issues reported in GitHub [2] requires the selection
of repositories regularly using the GitHub integrated issue
tracker. Instead, a study interested in the pull request (PR)
process of OSS projects [3] must ensure that the subject
systems actually adopt the PR mechanism (e.g., by verifying
that at least n PRs have been submitted in a given repository).
In addition to RQ-specific selection criteria, several studies
adopt specific filters to exclude toy and personal projects. For
example, previous works excluded repositories having a low
number of stars [4], commits [5], or issues [2].

1https://api.github.com/search/repositories?q=is:
public+fork:true

Once the selection criteria have been defined, software
repositories satisfying them must be identified. Frequently, the
search space is represented by all projects hosted on GitHub
that, as previously said, are tens of millions. To query such
a collection of repositories, developers can use the official
GitHub APIs [6] that, however, come with a number of
limitations both in terms of number of requests that can be
triggered and information that can be retrieved. For example,
the GitHub search API allows for a maximum of 30 requests
per minute and each request can return at most 100 results.
Only searching for some basic information about the public
Java repositories hosted on GitHub would require, at the
time of writing, ∼160k requests (∼88 hours). If additional
information is required for each repository (e.g., its number
of commits), additional requests must be triggered, making
the process even more time expensive. Moreover, setting an
appropriate value for the selection criteria (e.g., a project must
have at least 100 commits) without having an overall view
of the available data can be tricky. For instance, researchers
cannot easily select the top 10% repositories in terms of
number of commits without firstly collecting this information
for the entire population. Finally, given a selection criteria,
the GitHub search API provides at most the first 1,000 results
(through 10 requests). This means there is no easy way to
retrieve all matching results for a selection criteria if it exceed
this upper bound.

To support developers in mining GitHub, several solutions
have been proposed. Popular ones are GHTorrent [7] and
GHArchive [8]. Both projects continuously monitor public
events on GitHub and archive them. While the value of these
tools is undisputed, as the benefits they brought to the research
community, they do not provide a handy solution to support
the sampling of projects on GitHub accordingly to the desired
selection criteria. For example, computing the number of
commits, issues, etc. for a repository in GHTorrent would
require MySQL queries aimed at joining multiple tables.

We present GHS (GitHub Search) [9], a dataset and a tool
to simplify the sampling of projects to use in MSR studies.
GHS continuously mines a set of 25 characteristics of GitHub
repositories that have been often used as selection criteria in
MSR studies and that, accordingly to our experience in the
field, can be useful for sampling projects (e.g., adopted license,
number of commits, contributors, issues, and pull requests).

The tool behind GHS can be configured to mine projects
written in specific programming languages. As of today, it
mined information about over 700k repositories written in 10
different languages (i.e., Python, Java, C++, C, C#, Objective-
C, Javascript, Typescript, Swift, and Kotlin).
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Fig. 1: The GHS architecture

A stable version of the dataset is hosted on zenodo [10]
and it features 735,669 repositories written in the previously
mentioned languages. As detailed in the following, GHS has
been designed with scalability in mind and to specifically
support the sampling of projects for MSR study. While the
user can download the dataset and query it with an ad-hoc
script, a querying interface with export features is available at
https://seart-ghs.si.usi.ch.

II. THE DATASET

This section describes GHS [10], a dataset containing
information about 735,669 GitHub public repositories that
can be used by researchers to easily select projects for an
empirical study. In particular, 25 characteristics of each project
are mined, stored, and continuously updated. Our mining tool
exploits the GitHub search API and an ad-hoc crawler we
built to collect specific information from the repositories’
homepage. Table I lists the collected characteristics, together
with a short description for each of them, the source from
which the information is mined and one example of works in
the literature that used such a characteristic in the empirical
study (or “-” if we did not find a related reference).

Fig. 1 depicts the main steps behind the data collection pro-
cess put into place to build GHS. The following subsections
detail such a process.

A. Data Extraction

As depicted in Fig. 1, the GHS data collection process is
carried out through three main components.

1. GitHub API Invoker: This component has two main
responsibilities. First, it can retrieve the list of repositories
(i) written in a specific language, and (ii) created or updated
during a certain time period. The latter feature is needed, as
detailed later, to overcome the GitHub API maximum result
limit of 1,000 results per request. To retrieve, for example, the
list of repositories written in Java and updated in March 2020,
the following GitHub API request is triggered:

https://api.github.com/search/repositories?q=
fork:true+is:public+language:Java+created:

2020-03-01..2020-04-01

For each collected repository, the information in Table I
having “GitHub Search API” as mining source is retrieved.

Second, this component is in charge of monitoring if the
GitHub access token being used for mining has not exceeded
its request limit. Indeed, we use authenticated requests to
increase the usage limits imposed by the GitHub API.

2. GitHub Website Crawler: This component is used
to collect, for a given repository, all information in Table I
having a repository’s webpage as mining source. Since the
information of interest is scattered in different pages, this
component mines the repository’s (i) landing page [25], (ii)
issues page [26], and (iii) pull requests page [27].

We parse the HTML of these pages by using the CSS
selectors containing the information of interest. For this task
we primarily rely on the jsoup library [28]. Unfortunately, due
to the use of dynamic content generation in the GitHub pages,
not all elements are present when downloading the content of
a page, e.g., the number of contributors is dynamically gener-
ated, and cannot always be captured using jsoup (it depends on
the time required for loading the needed information). When
jsoup fails in retrieving a specific information, we rely on
the Selenium WebDriver for Chrome [29], which provides the
possibility to wait for the required information to load. Since
Selenium introduces a significant performance drawback, it is
only used as backup strategy when jsoup returns an error.

We are aware that mining CSS selectors as a strategy to
collect information can require future updates if the GitHub
UI substantially changes. We considered such a scenario in
our implementation by using, when possible, generic selectors
that are unlikely to change over time. Also, this “maintenance
cost” is counterbalanced by the high performance in retrieving
the required information ensured by the webpages parsing.

3. Repository Miner: This is the core component orches-
trating the collection of the GHS dataset. Before describing
how it works, it is important to clarify that the set of program-
ming languages of interest (i.e., the ones for which repositories
will be mined) is defined by the GHS administrator. In our
case, we set the 10 languages composing the current version
of the dataset. The Repository Miner implements a mining
algorithm that is triggered every six hours for continuously
updating the information in GHS. For each programming
language of interest, the algorithm checks if any prior mining
has been conducted. If no record of prior mining is found,
the GitHub API Invoker is triggered to mine all repositories
created or updated between January 1st 2008 (GitHub started
in February 2008) and the current time minus two hours2. If,
instead, a previous mining process MP has been performed
for the specific language, the GitHub API Invoker collects all
repositories created or updated between the last date mined in
MP and the current time minus two hours.

In both cases the GitHub API Invoker collects all reposito-
ries (i) written in the selected language, (ii) created/updated
during the selected interval, and (iii) having at least 10 stars.

2We ignore the last two hours since it takes time for the GitHub’s internal
database to sync newly created projects.

https://seart-ghs.si.usi.ch
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Charcteristic Description Mining Source Used in

name Name of the repository in the form user_name/repo_name GitHub Search API [11]
commits Number of commits on the default branch Repository’s landing page [12]
last_commits_sha The SHA-1 hash of the latest commit on the default branch Repository’s landing page -
last_commits The date of the latest commit on the default branch Repository’s landing page [13]
license The license used for the repository (if any) GitHub Search API [14]
branches Number of remote branches Repository’s landing page [15]
default_branch Name of the default branch GitHub Search API -
contributors Number of contributors Repository’s landing page [5]
releases Number of releases [16] Repository’s landing page [17]
watchers Number of users watching the repositories Repository’s landing page [18]
stars Number of stars the repository received GitHub Search API [3]
forks Number of repositories forked from this repository GitHub Search API [13]
is_fork_project Whether the projects is a fork GitHub Search API [19]
size The size of project (in kilobytes) GitHub Search API [20]
created_at Date when the repository is created GitHub Search API [19]
pushed_at Latest date when a commit is pushed to any of the repository’s branches GitHub Search API [12]
updated_at Latest date when the repository object is updated, e.g., description changed GitHub Search API -
homepage The repository’s homepage URL (if any) GitHub Search API [21]
main_language The main language that the repository’s source code is written in GitHub Search API [22]
total_issues Total number of issues (both open and closed issues) Repository’s issues page [2]
open_issues Number of open issues Repository’s issues page [2]
total_pull_requests Total number of pull requests (both open and closed issues) Repository’s pull requests page [3]
open_pull_requests Number of open pull requests Repository’s pull requests page [3]
has_wiki Whether the repository has wiki GitHub Search API [23]
archived Whether the repository is marked as archived (i.e., read-only) GitHub Search API [24]

TABLE I: Characteristics stored in GHS for each GitHub project

The decision of only collecting repositories having at least 10
stars aims at drastically reducing the number of repositories
we store and makes the data collection more scalable (e.g.,
from preliminary analyses we performed on Java, <5% of
repositories have at least 10 stars). We acknowledge that, as
also shown in previous work [30], the number of stars is not
a good proxy for repositories quality or relevance, and there
are better ways to automatically identify engineered GitHub
projects (e.g., the Reaper tool [30]). However, we believe
that the 10 stars threshold provides a reasonable compromise
between the quality of data and the time required to mine and
continuously update all projects.

If the GitHub API Invoker retrieves more than 1,000 repos-
itories for a time interval, it splits the interval in half, and the
two new time intervals are pushed to a priority queue handling
the requests to process. Such a mechanism is needed since the
GitHub API only provides the first 1,000 results for a request.
The algorithm recursively picks and process the oldest interval
from the queue until it is empty, meaning the mining for the
current language is completed.

Otherwise, if there are less than 1,000 results for an interval,
the algorithm iterates over the result list. For each retrieved
repository, the algorithm scrapes the missing information from
the repository web pages (using the GitHub Website Crawler),
and saves the full record to a database. Our algorithm can
mine/update ∼20k repositories everyday.

B. Data Storage

The data collected for all repositories (Table I) is stored in
a MySQL database. When updated information about a pre-
viously mined repository is collected, the corresponding rows
for that repository will be updated with the new information
(i.e., no new row is created).

While this ensures that the repository data contained within
GHS is kept updated, GHS does not offer an overview of the
historic evolution of said characteristics.

A stable version of the dataset, exported on January 28th

2021, is hosted on zenodo [10] and it features 735,669
repositories written in 10 languages.

DOIDOI 10.5281/zenodo.447639110.5281/zenodo.4476391

C. Querying GHS

The latest and continuously growing version of our dataset
can be downloaded/queried through our online platform [9].
Fig. 2 depicts the GUI we provide to query GHS (left part)
and an example of results page obtained by searching for the
Apache Java repositories having at least 100 commits (right).

General filters 1 can be applied to select projects containing
a specific string in their name (e.g., “apache/” will return all
projects run by the Apache Software Foundation), having a
specific license, written in a given language or using specific
labels for their issues (e.g., “refactoring”). The latter feature
is still under development, which is why we do not present
issue labels in the stable version of GHS.

Projects can also be filtered based on their history and
activity (e.g., number of commits, releases) 2 , even only
retrieving repositories that had activities in a specific time
frame 3 . Finally, filters labeled with 4 concern popularity
indicators, while those with 5 allow to further refine the
results list by removing, for example, forks.

By clicking on the “Search” button, the repositories satisfy-
ing the search criteria are shown, giving the possibility to the
user to inspect the results list and, eventually, download it in
different formats 6 .

http://dx.doi.org/10.5281/zenodo.4476391
http://dx.doi.org/10.5281/zenodo.4476391


Search form Results View
1

2 3

4 5

6

Fig. 2: GUI to query GHS [9] (left) and results page with export options (right).

III. RELATED WORK

To support researchers in MSR, several solutions have
been proposed. GHArchive [8] records the public GitHub
activities on an hourly basis as json archives. This is done by
mining the GitHub public event stream (e.g., a user creating
a repository, a repository gaining a new watcher) through
the use of webhooks [31]. This means that, for example, to
sample all Java repositories created in 2012 we must retrieve
all repositories linked to a “create” event from each hour, of
each day, of each month of the year. This translates in scanning
∼8 thousand files for said events. Thus, while GHArchive is
a fantastic data source for MSR studies, it is not convenient
for sampling repositories.

GHTorrent [7] continuously collects data from the GitHub
API storing it in both relational and non-relational databases.
It likely offers the most used dataset in MSR studies, thanks
to the huge amount of stored data and no limitations posed on
its querying. However, as mentioned in Section I, retrieving
specific information such as the number of commits in a
repository may require formulating queries on quite a large
dataset. GHS, as compared to GHTorrent, (i) stores only basic
repository information needed for making projects’ sampling
convenient, and (ii) provides a handy GUI to query the dataset.

Software Heritage [32] aims at preserving software in
source code form including, e.g., projects deleted from GitHub.
It contains, at the date of writing, over 150M repositories
featuring almost 10B source files. The focus of such a dataset
is different from GHS since Software Heritage is not explicitly
meant to simplify projects sampling for empirical studies
based on (pre-computed) selection criteria.

Surana et al. [33] proposed GitRepository, a tool to extract
structured information from GitHub repositories related to
contributors, issues, pull requests, releases, and subscribers.
The authors do not provide a dataset, but a tool able to create
a dataset using the GitHub API. GHS provides a wider variety
of information, allowing for a better sampling made easy
trough its GUI. In addition to the discussed works, some older
projects are no longer active.

Markovtsev and Long introduced Public Git Archive [34], a
dataset of ∼180k repositories having at least 50 stars. The
dataset has been released in 2018 and, to the best of our
knowledge, is not kept updated.

Bissyandé et al. [35] presented Orion, a corpus of soft-
ware projects collected from GitHub, Google Code [36] and
Freecode [37]. To query Orion a custom designed DSL lan-
guage must be used. The project webpage [38] is no longer
accessible.

IV. FUTURE WORK

There are four main directions in which we are improv-
ing GHS. First, we will add more and more programming
languages over time. Doing this is as easy as changing a
configuration file. Second, we will finalize the collection of the
issue labels that can be used, for example, when a researcher is
interested in repositories explicitly using specific labels such
as refactoring or documentation. The GUI already supports
such a feature, while the crawling of this information is not yet
finalized. Third, the code behind GHS is open source [39] and
we plan to collect requests for additional project characteristics
to include in GHS from the research community through its
issue tracker. Lastly, we will focus on improving performance,
especially in terms of data mining.

V. CONCLUSIONS

We presented GHS (GitHub Search), a dataset to simplify
the sampling of projects for MSR studies. A stable version
of GHS is available on zenodo [10] and features information
about 735,669 GitHub repositories written in 10 languages.
The dataset is continuously updated and expanded, with its
latest version available at https://seart-ghs.si.usi.ch together
with a handy querying interface.
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